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Preface

In recent years, the culture of mathematical competitions has been growing rapidly in
Malaysia. More and more secondary‐school and high‐school mathematics enthusiasts
are eager to test their skills on contest problems. I have had the honor of serving
as a member of the Malaysian National Training Team for the International Mathe-
matical Olympiad (BIMO). As I approach the end of my competitive career, I wish to
consolidate the mathematics I’ve learned over these years, and thus this book was born.

This book is a compendium of theorems and results that frequently appear in mathe-
matical Olympiads. Its purpose is to present each topic clearly, eliminate information
gaps, and serve as a“mathematical dictionary.”Beginners will find concise statements
of the key ideas in each area, while seasoned competitors can review known theorems
and proofs—or discover new results.

Proofs in this book are given primarily to justify why a result is true; they are in-
tended as references rather than detailed expositions of proof strategies. This book is
aimed at all scholars: secondary‐school students, undergraduates, IMO trainees, grad-
uate students, teachers, and coaches alike.

I have endeavored to collect as many elementary theorems and corollaries as possi-
ble. Personally, writing this book will motivate me to continue learning after I retire
from competition, and future editions will naturally introduce more advanced material.

Because this book is authored solely by me, I apologize in advance for any typos or in-
accuracies in the statements or proofs. Corrections and feedback are warmly welcomed;
please contact me at +60 11-5854 4151. Thank you in advance for your understanding.

Because of my own limitations, many more general forms of theorems (for example,
Minkowski’s inequality in Lp spaces) are not included here, but the material should
more than suffice for high‐school–level competitions.
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At present I am preparing for A-levels, so many chapters are still incomplete: the
sections on number theory, geometry, and advanced topics do not yet have their illus-
trations, and several well‐known theorems (such as Lagrange’s theorem in the theory
of orders and primitive roots, and various trigonometric identities) have not been in-
cluded. Therefore, this edition is titled “Version 0.”The first complete edition is
planned for release in February next year.

Should you wish to submit any results not yet included, please contact the author;
your contribution will broaden the mathematical horizons of many.

This book is not for profit, but provided purely for sharing.
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前言

近年来数学竞赛的风气在马来西亚日益增长，越来越多初高中数学爱好者跃跃欲试。
笔者 (本人)是马来西亚数学奥林匹克国家集训队（BIMO）的队员，随着年岁的增长，
现已接近退役年龄，希望能把这几年学习的数学知识整合在一起，便萌生撰写此书的
想法。

本书汇集了奥林匹克数学竞赛中常见的一些定理和结论，旨在使大纲脉络清晰，
消除信息差，可作为“数学词典”使用，让初学者可以快速了解各领域的核心知识点，
也可以让备赛多年的老将温习定理内容及其证明，甚至学习到新的结论。

本书中的证明多作为参考，以说明结论为何成立，而非详尽剖析证明思路。读者
对象涵盖所有学者，无论是中学生、大学生、正在备赛的竞赛生，亦或是研究生，以
及数学教师和竞赛教练都适用。

笔者会尽可能汇总初等数学中尽可能多的定理及结论；从个人角度来说，这也会
促使我在退役之后依然继续学习新的数学知识，理所当然的也会在后续版本逐步引入
一些高等内容。

因本书由本人独立撰写，若有错别字或定理、证明错误，敬请包涵，并欢迎拨打
+60 11-5854 4151 予以反馈指正，在此先行致谢。

由于笔者水平有限，许多定理的更一般形式（如在 Lp 空间的 Minkowski 不等式）
并不会囊括在此书当中，但应足以应对高中数学竞赛。

目前笔者正备考 A Level，本书诸多章节尚未完善，甚至数论、几何及高等章节
的插画都还没画，一些熟知定理也尚未收录（如阶和原根中的 Lagrange 定理及三角
恒等式等），故本版本命名为“第 0 版”。正式第一版预计将在明年二月发布。

如有意投稿未录入的结论，亦请联系笔者，您的分享将拓宽更多人的数学视野。

本书无任何盈利，仅为纯粹分享。
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Chapter 1

Algebra

1.1 Inequality
Theorem 1 QM-AM-GM-HM Inequality

Statement:

For x1, x2, ..., xn ∈ R>0, n ≥ 1, defined

Quadratic mean : Qn =

√√√√ 1

n

n∑
i=1

xi2,

Arithmetic mean : An =
1

n

n∑
i=1

xi,

Geometric mean : Gn = n

√√√√ n∏
i=1

xi,

Harmonic mean : Hn =
n

n∑
i=1

1

xi

.

Then Qn ≥ An ≥ Gn ≥ Hn. The equalities hold if and only if x1 = x2 = ... = xn.
.
2-variable form: √

a2 + b2

2
≥ a+ b

2
≥

√
ab ≥ 2

1
a + 1

b

.

Proof:
QM-AM inequality

Method 1: (prove by vector)
Consider a⃗ = (x1, x2, ..., xn), b⃗ = (1, 1, ..., 1), then

n∑
i=1

xi = a⃗ · b⃗ = |⃗a| · |⃗b| cos θ ≤ |⃗a| · |⃗b| =

√√√√n

n∑
i=1

xi2.

Multiply both side by 1

n
and we are done. ■

19
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Method 2: (probabilistic method)
Consider random variable X = {x1, x2, ..., xn} , then

Var(X) =
1

n

n∑
i=1

xi
2 −

(
1

n

n∑
i=1

xi

)2

.

The result is followed by the fact that variance is non-negative. ■

AM-GM inequality

Method 1: (backward induction)
We first prove that 2n works for ∀n ∈ Z≥0: The case n = 0 is trivial, suppose that AM-GM Inequality
is true for some 2k, then for n = 2k+1

2k+1∑
i=1

xi =

2k∑
i=1

xi +

2k+1∑
i=2k+1

xi ≥ 2k · 2k

√√√√ 2k∏
i=1

xi + 2k · 2k

√√√√ 2k+1∏
i=2k+1

xi ≥ 2k

(
2 · 2k+1

√√√√2k+1∏
i=1

xi

)
= 2k+1 ·

2k+1∏
i=1

xi.

Now we prove that if n = k works, then n = k + 1 works too: Consider x1, x2, ..., xk−1, xk where we
choose xk = 1

k−1

∑k−1
i=1 xi then since

1

k

k∑
i=1

xi ≥ k

√√√√ k∏
i=1

xi

is true, we substitute the value of xk inside the inequality obtain

1

k

k∑
i=1

xi =
(k − 1)

∑k−1
i=1 xi +

∑k−1
i=1 xi

k(k − 1)
=

1

k − 1

k−1∑
i=1

xi ≥ k

√√√√ k∏
i=1

xi =
k

√√√√ 1

k − 1

k−1∑
i=1

xi ·
k−1∏
i=1

xi.

which give us (
1

k − 1

k−1∑
i=1

xi

)k−1

≥
k−1∏
i=1

xi.

■

Method 2: (direct induction)
The case n = 0 is obvious, suppose that AM-GM Inequality holds true for some n = k, then for
n = k + 1,

Ak+1 =
1

2k
[(k+1)Ak+1+(k−1)Ak+1] =

1

2k

[
(k−1)Ak+1+

k+1∑
i=1

xi

]
≥ 1

2k

(
k k

√
xk+1A

k−1
k+1+k

k

√√√√ k∏
i=1

xi

)

≥ 2k

√√√√Ak−1
k+1

k+1∏
i=1

xi ⇒ Ak+1 ≥ Gk+1.

■

GM-HM inequality

By AM-GM Inequality,

n

√√√√ n∏
i=1

1

xi
≤ 1

n

n∑
i=1

1

xi
⇔ n

√√√√ n∏
i=1

xi ≥
n∑n

i=1
1
xi

■
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Theorem 2 Cauchy-Schwarz Inequality

Statement:

For a1, a2, ..., an, b1, b2, ..., bn ∈ R,(
n∑

i=1

ai
2

)(
n∑

i=1

bi
2

)
≥

(
n∑

i=1

aibi

)2

.

The equality holds if and only if ai = 0 or bi = 0 for 1 ≤ i ≤ n or ai
bi

=
aj
bj

for 1 ≤ i 6= j ≤ n.

Proof:
Method 1: (prove by algebraic identity)
We compute(

n∑
i=1

ai
2

)(
n∑

i=1

bi
2

)
−

(
n∑

i=1

aibi

)2

=
∑

1≤i,j≤n

ai
2bj

2−
∑

1≤i,j≤n

aibiajbj =
1

2

∑
1≤i,j≤n

ai
2bj

2+aj
2bi

2−2aibiajbj

=
1

2

∑
1≤i,j≤n

(aibj − ajbi)
2 ≥ 0.

■
.
Method 2: (prove by vector)
Consider vector a⃗ = (a1, a2, ..., an), b⃗ = (b1, b2, ..., bn), then the dot product

n∑
i=1

aibi = a⃗ · b⃗ = |⃗a| · |⃗b| cos θ ≤ |⃗a| · |⃗b| =

√√√√( n∑
i=1

ai2

)(
n∑

i=1

bi
2

)
.

■

Method 3: (prove by determinant)

S =

(
n∑

i=1

ai
2

)(
n∑

i=1

bi
2

)
−

(
n∑

i=1

aibi

)2

=

∣∣∣∣∑n
i=1 ai

2
∑n

i=1 aibi∑n
i=1 aibi

∑n
i=1 bi

2

∣∣∣∣ = n∑
i=1

∣∣∣∣∑n
i=1 ai

2 aibi∑n
i=1 aibi bi

2

∣∣∣∣
=

n∑
i=1

n∑
j=1

∣∣∣∣ aj2 aibi
ajbj bi

2

∣∣∣∣ = n∑
i=1

n∑
j=1

ajbi

∣∣∣∣aj ai
bj bi

∣∣∣∣ .
Similarly,

S =

n∑
i=1

n∑
j=1

aibj

∣∣∣∣ai aj
bi bj

∣∣∣∣ = −
n∑

i=1

n∑
j=1

aibj

∣∣∣∣aj ai
bj bi

∣∣∣∣ .
Thus,

2S =

n∑
i=1

n∑
j=1

(ajbi − aibj)

∣∣∣∣aj ai
bj bi

∣∣∣∣ . = n∑
i=1

n∑
j=1

(ajbi − aibj)
2 ≥ 0.

■
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Theorem 3 Hölder’s Inequality

Statement:

Form 1:
For p, q > 0, a1, a2, ..., an, b1, b2, ..., bn > 0,(

n∑
i=1

ai

)p( n∑
i=1

bi

)q

≥

(
n∑

i=1

p+q
√
aipbi

q

)p+q

.

Form 2:
For a1, a2, ..., an, b1, b2, ..., bn ≥ 0, if p, q > 1 s.t 1

p + 1
q = 1 then

(
n∑

i=1

ai
p

) 1
p
(

n∑
i=1

bi
q

) 1
q

≥
n∑

i=1

aibi.

Equality holds when ai = 0 or bi = 0, ∀1 ≤ i ≤ n, or ai
p

biq
=

aj
p

bjq
, ∀ 1 ≤ i, j ≤ n.

Proof:
One can easily check that Form 1 and Form 2 is equivalent, now we prove Form 1. Since the
inequality is homogeneous, WLOG let

∑n
i=1 ai =

∑n
i=1 bi = 1, then by AM-GM Inequality,

n∑
i=1

p+q
√
aipbi

q ≤
n∑

i=1

pai + qbi
p+ q

= 1.

■

Remark: p = q = 1 in Form 1 and p = q = 2 in Form 2 is actually Cauchy-Schwarz Inequality.

Theorem 4 Titu’s Lemma

Statement:

For m ≥ 0, a1, a2, ..., an ≥ 0, b1, b2, ..., bn > 0,

n∑
i=1

ai
m+1

bi
m ≥

( n∑
i=1

ai

)m+1

( n∑
i=1

bi

)m ;

Equality holds when m = 0 or ai = 0, ∀ 1 ≤ i ≤ or ai

bi
=

aj

bj
, ∀ 1 ≤ i 6= j ≤ n for m /∈{-1,0}.

Proof: By Hölder’s Inequality,(
n∑

i=1

bi

)m( n∑
i=1

ai
m+1

bi
m

)
≥

(
n∑

i=1

ai

)m+1

.

■
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Theorem 5 Schur’s Inequality
Statement:

Form 1:
For a, b, c ≥ 0, r ≥ 0, ∑

cyc

ar(a− b)(a− c) ≥ 0.

Form 2:
For a, b, c ≥ 0, r ≥ 0, ∑

cyc

ar(a2 + bc) ≥
∑
cyc

ar+1(b+ c).

Form 3: (r = 1)
For a, b, c ≥ 0,

a3 + b3 + c3 + 3abc ≥
∑
sym

a2b.

Equality holds if and only if a = b = c or a = b, c = 0.

Proof: Only need to prove Form 1. WLOG let a ≥ b ≥ c, then∑
cyc

ar(a− b)(a− c) = (a− b)[ar(a− c)− br(b− c)] + cr(c− a)(c− b) ≥ 0.

The last step is because a ≥ b and c ≥ 0. ■

Theorem 6 Power Mean Inequality
Statement:

For a1, a2, ..., an > 0, α, β 6= 0, if α ≥ β, then(
1

n

n∑
i=1

ai
α

) 1
α

≥

(
1

n

n∑
i=1

ai
β

) 1
β

.

Equality holds if and only if a1 = a2 = ... = an.

Proof: Let f(x) = x
α
β , x > 0, since α ≥ β, then f ′′(x) > 0 which means f convex.

By Jensen’s Inequality,

1

n

n∑
i=1

f(ai
β) ≥ f

(
1

n

n∑
i=1

ai
β

)
⇔ 1

n

n∑
i=1

(ai
β)

α
β ≥

(
1

n

n∑
i=1

ai
β

)α
β

⇔

(
1

n

n∑
i=1

ai
α

) 1
α

≥

(
1

n

n∑
i=1

ai
β

) 1
β

.

■

Remark: If denote

M(α) =

(
1

n

n∑
i=1

ai
α

) 1
α

,

then
M(2) = Qn,M(1) = An, lim

α→0
M(α) = Gn,M(−1) = Hn,

lim
α→−∞

M(α) = min{a1, a2, ..., an}, lim
α→+∞

M(α) = max{a1, a2, ..., an}.
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Theorem 7 Triangle Inequality
Statement:

For zi ∈ C, 1 ≤ i ≤ n, ∣∣∣∣∣
n∑

i=1

zi

∣∣∣∣∣ ≤
n∑

i=1

|zi|.

Proof : We only prove the base case since the inductive step is trivial: Let z1, z2 ∈ C correspond to
the vectors −→

OA and −−→
OB, respectively. Construct the parallelogram OACB, so that z1 + z2

corresponds to −−→
OC. In 4OAC we have∣∣−−→OC∣∣ ≤

∣∣−→OA∣∣ +
∣∣−→AC∣∣.

■

Theorem 8 Jensen’s Inequality
Statement:

Let f : dom(f) → R be a convex function. For any n ∈ N and any λ1, λ2, . . . , λn ∈ (0, 1) with
n∑

i=1

λi = 1,

and any x1, x2, . . . , xn ∈ dom(f), we have

f

( n∑
i=1

λi xi

)
≤

n∑
i=1

λi f(xi).

Proof:
We proceed by induction on n. For n = 1 the result is trivial. Assume the inequality holds for n = k.
Consider λ1, . . . , λk+1 ∈ (0, 1) and x1, . . . , xk+1 ∈ dom(f), and set

y =

∑k
i=1 λi xi

1− λk+1
,

so that
k∑

i=1

λi = 1− λk+1 and

k+1∑
i=1

λi xi = (1− λk+1) y + λk+1 xk+1.

By convexity,

f

(k+1∑
i=1

λi xi

)
≤ (1− λk+1) f(y) + λk+1 f(xk+1).

The inductive hypothesis applied to y gives

f(y) ≤
k∑

i=1

λi
1− λk+1

f(xi).

Combining these yields

f
(k+1∑
i=1

λi xi

)
≤

k+1∑
i=1

λi f(xi),

completing the induction. ■
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Definition 1 Majorizes

Description:

If x1 ≥ x2 ≥ ... ≥ xn, y1 ≥ y2 ≥ ... ≥ yn, s.t

n∑
i=1

xi =

n∑
i=1

yi,

k∑
i=1

xi ≥
k∑

i=1

yi, ∀ 1 ≤ k ≤ n− 1,

then we said that (x1, x2, ..., xn) majorizes (y1, y2, ..., yn), denoted as (x1, x2, ..., xn) �
(y1, y2, ..., yn).

Theorem 9 Karamata’s Inequality

Statement:

Let f : dom(f) → R be convex, if (xi) � (yi), then
n∑

i=1

f(xi) ≥
n∑

i=1

f(yi).

The reverse inequality holds when f concave.

Proof:
lemma: if f is convex over interval (a, b), then for ∀ a ≤ x1 ≤ x2 ≤ b, we have

f(x)− f(x1)

x− x1
≤ f(x)− f(x2)

x− x2
.

proof of lemma: Just do casework on x /∈ {x1, x2}.
□

Back to the problem, defined

ci =
f(ai)− f(bi)

ai − bi
, Ai =

i∑
j=1

aj , A0 = 0 and Bi =

i∑
j=1

bj , B0 = 0.

Since ai ≥ ai+1 and bi ≥ bi+1, we get that ci ≥ ci+1. Now we can compute

n∑
i=1

f(ai)−f(bi) =
n∑

i=1

ci(ai−bi) =
n∑

i=1

ci(Ai−Ai−1−Bi+Bi−1) =

n∑
i=1

ci(Ai−Bi)−
n−1∑
i=0

ci+1(Ai−Bi) = (∗)

and since An = Bn,

(∗) =
n−1∑
i=1

ci(Ai −Bi)−
n−1∑
i=0

ci+1(Ai −Bi) =

n∑
i=1

(ci − ci+1)(Ai −Bi) ≥ 0.

■
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Theorem 10 Muirhead’s Inequality
Statement:

For a1, a2, ..., an ≥ 0, if (x1, x2, ..., xn) � (y1, y2, ..., yn), then

∑
sym

n∏
i=1

axi
i ≥

∑
sym

n∏
i=1

ayi

i .

some useful result from Muirhead’s Inequality:
(2, 0, 0) � (1, 1, 0),

(a+ b+ c)2 ≥ 3

2

∑
cyc

a(b+ c).

(2, 1, 0) � (1, 1, 1),

(a+ b)(b+ c)(c+ a) ≥ 8abc.

(a, b) � (k, t) for some k < a, k + t = a+ b, e.g (5, 1) � (4, 2),

x5y + xy5 ≥ x4y2 + x2y4.

Proof: (by Lau Chi Hin)
Let (pi) � (qi), 1 ≤ i ≤ n, then there ∃j, k, j < k, s.t pj > qj , pk < qk and hence pj > qj > qk > pk.
Let b = pj+pk

2 , d =
pj−pk

2 then [b− d, b+ d] = [pk, pj ] ⊃ [qk, qj ]. Let c = max{|qj − b|, |qk − b|} then
c < d because if c = ql − b for l ∈ {j, k} since ql < b+ d, then ql − b < c and if c = b− ql then since
ql > b− d, we also obtain b− ql < d. Consider (ri) s.t ri = pi except rj = b+ c, rk = b− c, then
either rj = qj , rk = 2b− qj = pj + pk − qj or rk = qk, rj = pj + pk − qk because if |qj − b| > |qk − b|
then qj − b can only be non-negative since qj > qk and if |qj − b| < |qk − b| then qk − b can only be
non-negative, then substitute the value of c into rj , rk and get what we want. Thus, we have
(pi) � (ri) � (qi). Now∑

sym

n∏
i=1

api

i −
∑
sym

n∏
i=1

arii =
∑
sym

aj
pjak

pk − aj
rjak

rk =
∑
sym

aj
b+dak

b−d − aj
b+cak

b−c.

For each permutation σ, ∃ permutation ρ s.t σ(i) = ρ(i), ∀ i /∈ {j, k} and σ(j) = ρ(k), σ(k) = ρ(j).
We pair the terms for σ and ρ and observe that

(aj
b+dak

b−d−ajb+cak
b−c)−(ak

b+daj
b−d−akb+caj

b−c) = aj
b−dak

b−d(aj
d+c−akd+c)(aj

d−c−akd−c) ≥ 0.

Then the sum ∑
sym

n∏
i=1

api

i −
∑
sym

n∏
i=1

arii ≥ 0.

We notice that the number of identical terms between (ri) and (qi) is exactly one more than the
number of identical terms between (pi) and (qi), repeat this process until (ri) = (qi) then we are done
. ■

Remark: It is a really hard proof and let me explain what’s going on at the last step: We now
replace (pi) with (ri), do the same thing to get (r′i) which is originally the (ri), then we have∑

sym

n∏
i=1

arii −
∑
sym

n∏
i=1

a
r′i
i ≥ 0.

which imply∑
sym

n∏
i=1

api

i −
∑
sym

n∏
i=1

a
r′i
i =

∑
sym

n∏
i=1

api

i −
∑
sym

n∏
i=1

arii +
∑
sym

n∏
i=1

arii −
∑
sym

n∏
i=1

a
r′i
i ≥ 0.
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Theorem 11 Rearrangement Inequality

Statement:

For a1 ≤ a2 ≤ ... ≤ an, and b1 ≤ b2 ≤ ... ≤ bn, let bσ(1), bσ(2), ..., bσ(n) be the permutation of
b1, b2, ..., bn, then

n∑
i=1

aibi ≥
n∑

i=1

aibσ(i) ≥
n∑

i=1

aibn+1−i.

Proof:
Let

(c1, c2, ..., cn) = argmax
(bσ(1),bσ(2),...,bσ(n))

{
n∑

i=1

aibσ(i)

}
,

then c1 ≤ c2 ≤ ... ≤ cn, otherwise ∃ i s.t ci > ci+1 but then (ai+1 − ai)(ci − ci+1) > 0 gives
aici+1 + ai+1ci > aici + ai+1ci+1, contradiction. Hence (ci) = (bi).

On the other hand, let

(d1, d2, ..., dn) = argmin
(bσ(1),bσ(2),...,bσ(n))

{
n∑

i=1

aibσ(i)

}
,

Similarly d1 ≥ d2 ≥ ... ≥ dn, otherwise ∃ i s.t di < di+1 but then (ai+1 − ai)(di − di+1) < 0 gives
aidi+1 + ai+1di < aidi + ai+1di+1, contradiction. Thus (di) = (bn+1−i). ■

Theorem 12 Chebyshev’s Inequality

Statement:

Let a1 ≥ a2 ≥ ... ≥ an, b1 ≥ b2 ≥ .. ≥ bn be reals, then

n

n∑
i=1

aibi ≥

(
n∑

i=1

ai

)(
n∑

i=1

bi

)
≥ n

n∑
i=1

aibn+1−i.

Both equalites hold at the same time when ai = aj or bi = bj for 1 ≤ i, j ≤ n.

Remark: Chebyshev’s Inequality is also true when a1 ≤ a2 ≤ ... ≤ an, b1 ≤ b2 ≤ .. ≤ bn (just let
ci = an+1−i, di = bn+1−i then apply Chebyshev’s Theorem as usual) and the reverse inequality holds
when a1 ≥ a2 ≥ ... ≥ an, b1 ≤ b2 ≤ .. ≤ bn which is actually the second inequality

Proof:
For ∀ 1 ≤ i, j ≤ n, (ai − aj)(bi − bj) ≥ 0 ⇔ aibi + aj + bj ≥ aibj + ajbi. Then(

n∑
i=1

ai

)(
n∑

i=1

bi

)
=

∑
1≤i,j≤n

aibj =
1

2

∑
1≤i,j≤n

aibj + ajbi ≤
1

2

∑
1≤i,j≤n

aibi + ajbj = n

n∑
i=1

aibi.

The second inequality is because (ai − aj)(bi − bj) ≤ 0. ■
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Theorem 13 Surányi’s Inequality
Statement:

For x1, x2, ..., xn > 0,

(n− 1)

n∑
i=1

xi
n + n

n∏
i=1

xi ≥

(
n∑

i=1

xi

)(
n∑

i=1

xi
n−1

)
.

Proof: (by Mihály Bencze)
Apply induction: The case n = 2 is trivial, suppose Surányi Inequality is true for some n ≥ 2 and we
prove for n+ 1. Since this inequality is symmetric and homogeneous, WLOG let
x1 ≥ x2 ≥ ... ≥ xn+1,

∑n+1
i=1 xi = xn+1 + 1 i.e

∑n
i=1 xi = 1. Now what we want to prove is

n

n+1∑
i=1

xi
n+1 + (n+ 1)

n+1∏
i=1

xi ≥

(
n+1∑
i=1

xi

)(
n+1∑
i=1

xi
n

)
,

which is equivalent to prove

n

n∑
i=1

xi
n+1 + nxn+1

n+1 + nxn+1

n∏
i=1

xi + xn+1

n∏
i=1

xi − (1 + xn+1)

(
n∑

i=1

xi
n + xnn+1

)
≥ 0.

by inductive hypothesis,

nxn+1

n∏
i=1

xi ≥ xn+1

n∑
i=1

xi
n−1 − (n− 1)xn+1

n∑
i=1

xi
n.

only need to prove

n

n∑
i=1

xi
n+1 −

n∑
i=1

xi
n − xn+1

(
n

n∑
i=1

xi
n −

n∑
i=1

xi
n−1

)
+ xn+1

(
n∏

i=1

xi + (n− 1)xnn+1 − xn−1
n+1

)
≥ 0,

Consider

n

n∑
i=1

xi
n −

n∑
i=1

xk
n−1 = n

n∑
i=1

xi
n −

(
n∑

i=1

xk
n−1

)(
n∑

i=1

xi

)
≥ 0,

which is true by Chebyshev’s Inequality and also

nxi
n+1 +

1

n
xi

n−1 ≥ 2xi
n,

which is also true by AM-GM Inequality, then sum through 1 ≤ i ≤ n we have

n

n∑
i=1

xi
n+1 −

n∑
i=1

xi
n ≥ 1

n

(
n

n∑
i=1

xi
n −

n∑
i=1

xk
n−1

)
,

which means

n

n∑
i=1

xi
n+1 −

n∑
i=1

xi
n − xn+1

(
n

n∑
i=1

xi
n −

n∑
i=1

xi
n−1

)
≥ 0,

because xn+1 ≤ 1
n

∑n
i=1 xi =

1
n , remains to compute

n∏
i=1

xi + (n− 1)xn+1
n − xn−1

n+1 =

n∏
i=1

(xi − xn+1 + xn+1) + (n− 1)xn+1
n − xn−1

n+1

≥ xn+1
n − xn−1

n+1

n∑
i=1

(xi − xn+1) + (n− 1)xn+1
n − xn−1

n+1 = 0.

■
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Theorem 14 Bernoulli’s Inequality

Statement:

Form 1:
Let 0 6= x > −1. If α /∈ [0, 1], then

(1 + x)α > 1 + αx;

if α ∈ (0, 1), then
(1 + x)α < 1 + αx.

Form 2:
Let x1, x2, . . . , xn > −1 and all xi are either non-negative or non-positive. Then

n∏
i=1

(1 + xi) ≥ 1 +

n∑
i=1

xi,

with equality iff at least n− 1 of the xi are zero.

Proof:
Proof of Form 1
Define

f(x) = (1 + x)α − 1− αx,

so
f ′(x) = α(1 + x)α−1 − α = α

(
(1 + x)α−1 − 1

)
.

When α /∈ [0, 1], (1 + x)α−1 > 1 iff x > 0, hence f ′(x) > 0 for x > 0 and f(0) = 0, giving
(1 + x)α > 1 + αx. Similarly, if 0 < α < 1, then (1 + x)α−1 > 1 iff x < 0, so f ′(x) > 0 for x < 0 and
again f(0) = 0, yielding (1 + x)α < 1 + αx. ■

Proof of Form 2
We prove the generalized form by induction on n.
Base case n = 2:

(1 + x1)(1 + x2) = 1 + x1 + x2 + x1x2 ≥ 1 + x1 + x2.

Assume for n− 1 that
n−1∏
i=1

(1 + xi) ≥ 1 +

n−1∑
i=1

xi.

Then
n∏

i=1

(1 + xi) =

(
n−1∏
i=1

(1 + xi)

)
(1 + xn) ≥

(
1 +

n−1∑
i=1

xi

)
(1 + xn) = 1 +

n∑
i=1

xi +

n−1∑
i=1

xi xn ≥ 1 +

n∑
i=1

xi.

This completes the induction. ■
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Theorem 15 Minkowski’s Inequality
Statement:

For a1, a2, . . . , an, b1, b2, . . . , bn > 0 and p ≥ 1,(
n∑

i=1

(
ai + bi

)p) 1
p

≤

(
n∑

i=1

ai
p

) 1
p

+

(
n∑

i=1

bi
p

) 1
p

.

Equality holds if and only if ai
p

bi
p =

aj
p

bj
p , ∀1 ≤ i, j ≤ n.

When 0 6= p < 1, the inequality change sign.

Proof:
When p ≥ 1, by Hölder’s inequality,

n∑
i=1

ai (ai + bi)
p−1 ≤

(
n∑

i=1

api

) 1
p
(

n∑
i=1

(
(ai + bi)

p−1
) p

p−1

)1− 1
p

=

(
n∑

i=1

api

) 1
p
(

n∑
i=1

(ai + bi)
p

)1− 1
p

.

Similarly,
n∑

i=1

bi (ai + bi)
p−1 ≤

(
n∑

i=1

bpi

) 1
p
(

n∑
i=1

(ai + bi)
p

)1− 1
p

.

Adding these two inequalities yields

n∑
i=1

(ai + bi)
p ≤

[(
n∑

i=1

api

) 1
p

+

(
n∑

i=1

bpi

) 1
p
](

n∑
i=1

(ai + bi)
p

)1− 1
p

,

and hence (
n∑

i=1

(ai + bi)
p

) 1
p

≤

(
n∑

i=1

api

) 1
p

+

(
n∑

i=1

bpi

) 1
p

.

The case 0 6= p < 1 is similar. ■

Theorem 16 Nesbitt’s Inequality
Statement:

For a, b, c > 0, ∑
cyc

a

b+ c
≥ 3

2
.

Equality holds when a = b = c.

Proof:
By Cauchy-Schwarz Inequality,(∑

cyc

a

b+ c

)(∑
cyc

a(b+ c)

)
≥

(∑
cyc

a

)2

= (a+ b+ c)2 ≥ 3

2

∑
cyc

a(b+ c).

The last step is by Muirhead’s Inequality when consider (2, 1, 0) � (1, 1, 1). ■
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Theorem 17 Hermite–Hadamard Inequality

Statement:

For any convex function f : dom(f) → R if a, b ∈ dom(f), a < b, then

f
(a+ b

2

)
≤ 1

b− a

∫ b

a

f(x) dx ≤ f(a) + f(b)

2
.

If f is concave, then both inequalities reverse.

Proof:
Set x = t a+ (1− t) b, so dx = (b− a) dt and∫ b

a

f(x) dx = (b− a)

∫ 1

0

f
(
t a+ (1− t) b

)
dt.

Since f is convex, for each t ∈ [0, 1],

f
(
t a+ (1− t) b

)
≤ t f(a) + (1− t) f(b).

Integrating over [0, 1] gives

1

b− a

∫ b

a

f(x) dx ≤
∫ 1

0

(
t f(a) + (1− t) f(b)

)
dt =

f(a) + f(b)

2
.

On the other hand, by Jensen’s inequality,

f
(a+ b

2

)
= f

(∫ 1

0

(t a+ (1− t) b) dt
)
≤
∫ 1

0

f
(
t a+ (1− t) b

)
dt =

1

b− a

∫ b

a

f(x) dx.

Combining these yields the desired result. ■

Lemma 1

Statement:

For n, k ∈ Z>0, (
n

k

)
<

1

e

(
en

k

)k

.

Proof: It is obvious that n!

(n− k)!
< nk, divide both side by k! gives

(
n

k

)
<
nk

k!
, only need to prove

k! ≥ e(ke )
k, we finish the proof after noticing

k∑
i=1

ln i ≥
∫ k

1

ln x dx = kln k − k + 1.

■
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1.2 Algebraic Identity
Theorem 18 Nicomachus’Theorem
Statement:

For n ∈ Z>0,
n∑

k=1

k3 =

( n∑
k=1

k

)2

=
[n(n+ 1)

2

]2
.

Proof:
We use induction on n. For n = 1 the identity reads 13 = 12, which holds. Assume

n∑
k=1

k3 =
[n(n+ 1)

2

]2
.

Then
n+1∑
k=1

k3 =

n∑
k=1

k3 + (n+ 1)3 =
[n(n+ 1)

2

]2
.+ (n+ 1)3 = (n+ 1)2

(n2
4

+ n+ 1
)
=
[ (n+ 1)(n+ 2)

2

]2
,

completing the induction. ■

Lemma 2
Statement:

For x, y ∈ C and n ∈ Z>0,
Form 1:

xn − yn = (x− y)

n−1∑
k=0

xn−1−k yk.

Form 2: For 2 - n,

xn + yn = (x+ y)

n−1∑
k=0

(−1)k xn−1−k yk.

Proof:
For the difference, observe the telescoping sum

xn − yn =

n−1∑
k=0

(
xn−kyk − xn−k−1yk+1

)
= (x− y)

n−1∑
k=0

xn−1−kyk.

When n is odd, set y′ = −y. Then

xn + yn = xn − (y′)n = (x− y′)

n−1∑
k=0

xn−1−k(y′)k = (x+ y)

n−1∑
k=0

(−1)k xn−1−kyk,

since (y′)k = (−y)k = (−1)kyk. ■
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Theorem 19 Lagrange’s Identity

Statement:

For a1, a2, ..., an, b1, b2, ..., bn ∈ R,(
n∑

i=1

ai
2

)(
n∑

i=1

bi
2

)
−

(
n∑

i=1

aibi

)2

=
1

2

∑
1≤i,j≤n

(aibj − ajbi)
2 =

∑
1≤i<j≤n

(aibj − ajbi)
2.

vector form: |⃗a× b⃗|2 + (⃗a · b⃗)2 = |⃗a|2 |⃗b|2.

Proof: Directly obtain from Method 1 and Method 3 in Cauchy-Schwarz Inequality section. ■

.

Theorem 20 Abel’s Transformation

Statement:

For a1, a2, ..., an, b1, b2, ..., bn ∈ C, defined Sk =
∑k

i=1 bi, then

n∑
i=1

aibi = Snan +

n−1∑
i=1

Si(ai − ai+1).

Proof:
Method 1: (algebraic method)

n∑
i=1

aibi =

n∑
i=1

ai(Si − Si−1) =

n∑
i=1

aiSi −
n∑

i=1

aisi−1 =

n∑
i=1

aiSi −
n−1∑
i=0

ai+1Si

= anSn − a1S0 +

n−1∑
i=1

aiSi −
n−1∑
i=1

ai+1Si = Snan +

n−1∑
i=1

Si(ai − ai+1).

■

Method 2: (combinatoric method)

Apply double counting: we compute the area of these rectangles horizontally and get
∑n

i=1 aibi. On
the other hand, we compute vertically obtain Snan +

∑n−1
i=1 Si(ai − ai+1). ■
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Definition 2 Pochhammer symbol
Description:

For x ∈ C, n ∈ Z≥0, n ≤ x, the Pochhammer symbol define as

(x)n :=

n−1∏
i=0

(x− i).

where (x)1 = x and when x ∈ Z>0, (x)x = x!.

Theorem 21 Binomial Theorem
Statement:

Form 1:
For a, b ∈ C, n ∈ Z>0,

(a+ b)n =

n∑
i=0

(
n

i

)
aibn−i.

Form 2: (Generalize)
For x, y ∈ C, |x| < |y|, r ∈ C,

(x+ y)r =
∑
i≥0

(
r

i

)
xiyr−i.

Proof:
Form 1:
Apply induction on n: The case n = 1 is trivial, suppose the identity holds for n, then for n+ 1,

(a+ b)n+1 = (a+ b)(a+ b)n = (a+ b)

n∑
i=0

(
n

i

)
aibn−i =

n+1∑
i=0

(
n

i

)
aibn+1−i +

n+1∑
i=0

(
n

i− 1

)
aibn+1−i,

By Pascal’s Identity,
n+1∑
i=0

aibn+1−i

((
n

i

)
+

(
n

i− 1

))
=

n+1∑
i=0

(
n+ 1

i

)
aibn+1−i.

■

Form 2:
Consider f(a) = (1 + a)r, |a| < 1 for ∀i ∈ Z≥0, we have

f (i)(a) = (r)i(1 + a)r−i,

so
f (n)(0)

i!
=

(
r

i

)
.

Therefore by Taylor series of f(a),

(1 + a)r =
∑
i≥0

(
r

i

)
ai

take a =
x

y
, multiply both side by yr and we are done. ■
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Theorem 22 Multinomial Theorem

Statement:

For k ∈ Z>0, n ∈ Z≥0, and any commutative ring or field,

( k∑
i=1

xi

)n
=

∑
n1,...,nk≥0

n1+···+nk=n

(
n

n1, n2, · · · , nk

) k∏
i=1

xni
i .

Proof:
Consider the expansion of

(x1 + x2 + · · ·+ xk)
n

as the product of n identical factors (x1 + · · ·+ xk). Expanding without simplification yields terms of
the form

xn1
1 xn2

2 · · ·xnk

k , n1 + · · ·+ nk = n.

For each fixed tuple (n1, . . . , nk), there are n!
n1!n2! ···nk!

ways to choose which factors contribute each
xi. Hence

(x1 + · · ·+ xk)
n =

∑
n1+···+nk=n

n!

n1! · · · nk!
xn1
1 xn2

2 · · ·xnk

k .

■

Theorem 23 Hermite’s Identity

Statement:

For x ∈ R, n ∈ Z>0
n−1∑
k=0

⌊
x+

k

n

⌋
= bnxc .

Proof:
Define

f(x) =

n−1∑
k=0

⌊
x+

k

n

⌋
− bnxc .

Then

f
(
x+

1

n

)
=

n−1∑
k=0

⌊
x+

k + 1

n

⌋
− bnx+ 1c =

(n−1∑
k=0

⌊
x+

k

n

⌋
+ 1
)
−
(
bnxc+ 1

)
= f(x).

Hence f is periodic of period 1

m
. For x ∈

[
0,

1

m

)
each term

⌊
x+

k

m

⌋
= 0 and bmxc = 0, so

f(x) = 0. Therefore f ≡ 0, as required. ■
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Theorem 24 Landau’s identity

Statement:

m,n > 1 are coprime odd integers, then
m−1

2∑
k=1

⌊kn
m

⌋
+

n−1
2∑

k=1

⌊km
n

⌋
=

(m− 1)(n− 1)

4
.

Proof:
Consider the set

A =
{
xm− yn : 1 ≤ x ≤ n− 1

2
, 1 ≤ y ≤ m− 1

2

}
.

First, if
xm− yn = x′m− y′n

then (x− x′)m = (y − y′)n. Since gcd(m,n) = 1 and 1 ≤ x, x′ ≤ n− 1

2
< n, we deduce x = x′ and

hence y = y′. Thus all elements of A are distinct, giving

|A| = (m− 1)(n− 1)

4
.

On the other hand, xm− yn ≥ 0 iff y ≤ xm

n
. For each integer x ∈

{
1, . . . ,

n− 1

2

}
, there are

⌊xm
n

⌋
choices of y, so exactly

n−1
2∑

x=1

⌊xm
n

⌋
nonnegative elements in A, a similar count shows there are

m−1
2∑

y=1

⌊yn
m

⌋
nonpositive elements. Since 0 /∈ A, every element of A is either positive or negative, and is counted
exactly once. Hence

|A| =

n−1
2∑

x=1

⌊xm
n

⌋
+

m−1
2∑

y=1

⌊yn
m

⌋
.

Combining the two expressions for |A| yields the identity. ■

Lemma 3

Statement:

For a, b ∈ R,
|a− b| = a+ b− 2min{a, b}.

Proof:
WLOG a ≥ b then |a− b| = a− b = a+ b− 2b = a+ b− 2min{a, b}. ■
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Lemma 4
Statement:

For a, b ∈ R,
|a+ b| − |a− b| = 2 sgn(a) sgn(b)min{|a|, |b|}.

Proof:
WLOG let |a| ≥ |b|, there are two cases:
1. a, b same sign: sgn(a) sgn(b) = 1. Then

|a+ b| = |a|+ |b|, |a− b| =
∣∣ |a| − |b|

∣∣ = |a| − |b|.

Hence
|a+ b| − |a− b| = (|a|+ |b|)− (|a| − |b|) = 2|b| = 2 sgn(a) sgn(b)min{|a|, |b|}.

2. a, b opposite sign: sgn(a) sgn(b) = −1. Then

|a+ b| =
∣∣ |a| − |b|

∣∣ = |a| − |b|, |a− b| = |a|+ |b|.

Thus
|a+ b| − |a− b| = (|a| − |b|)− (|a|+ |b|) = −2|b| = 2 sgn(a) sgn(b)min{|a|, |b|}.

■

Theorem 25 Binet–Cauchy Identity
Statement:

Let ai, bi, ci, di ∈ C for 1 ≤ i ≤ n. Then( n∑
i=1

aici

)( n∑
i=1

bidi

)
=
( n∑
i=1

aidi

)( n∑
i=1

bici

)
+

∑
1≤i<j≤n

(aibj − ajbi)(cidj − cjdi).

Proof:
Expand the last sum:∑

1≤i<j≤n

(aibj − ajbi)(cidj − cjdi) =
∑

1≤i<j≤n

(
aici bjdj + ajcj bidi − aicj bjdi − ajci bidj

)
.

Observe that ∑
1≤i<j≤n

(
aici bjdj + ajcj bidi

)
=
∑
i ̸=j

aici bjdj =

n∑
i=1

aici

n∑
j=1

bjdj −
n∑

i=1

aici bidi,

and likewise ∑
1≤i<j≤n

(
aicj bjdi + ajci bidj

)
=

n∑
i=1

aidi

n∑
j=1

bjcj −
n∑

i=1

aidi bici.

Since
∑

i aici bidi =
∑

i aidi bici, taking the difference yields
n∑

i=1

aici

n∑
j=1

bjdj −
n∑

i=1

aidi

n∑
j=1

bjcj ,

which rearranges to the claimed identity. ■
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Lemma 5

Statement:

For k ∈ R, define
fk(x) = I(0 ≤ k ≤ x).

Then
min{a, b} =

∫ +∞

0

fa(x) fb(x) dx.

Proof:

Note that fa(x)fb(x) = 1 exactly when 0 ≤ x ≤ min{a, b}, and vanishes otherwise. Hence∫ +∞

0

fa(x)fb(x) dx =

∫ min{a,b}

0

1dx = min{a, b}.

■

Lemma 6

Statement:

For any a, b > 0,
max{a, b} = lim

s→∞

(
as + bs

) 1
s .

Proof:
Let M = max{a, b} and set

r =
min{a, b}

M
, 0 < r ≤ 1.

Then

(as + bs)
1
s =M

[( a
M

)s
+
( b

M

)s] 1
s

=M
(
1 + rs

) 1
s .

The case a = b is trivial, consider r < 1, we have rs → 0 as s→ ∞. Hence

lim
s→∞

(
1 + rs

) 1
s = exp

(
lim
s→∞

ln(1 + rs)

s

)
= e0 = 1.

It follows that
lim
s→∞

(as + bs)
1
s =M · 1 = max{a, b},

as claimed. ■
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Theorem 26 Taylor’s Expansion
Statement:

Let f ∈ C∞(I) on an open interval I containing a. Then for all x ∈ I,

f(x) =

∞∑
n=0

f (n)(a)

n!
(x− a)n.

Following are some famous expansion,:

1. ex =

∞∑
n=0

xn

n!
.

2. sinx =

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
.

3. cosx =

∞∑
n=0

(−1)n
x2n

(2n)!
.

4. (1 + x)α =

∞∑
n=0

(
α

n

)
xn.

Remark: Maclaurin series is the special case of Taylor’s theorem with a = 0.

Proof:
Define

P (x) =

k−1∑
n=0

f (n)(a)

n!
(x− a)n, hk(x) =


f(x)− P (x)

(x− a)k
, x 6= a,

0, x = a.

Since f ∈ C∞(I), we have f (j)(a) = P (j)(a) for 0 ≤ j ≤ k − 1. Hence both numerator and
denominator vanish to order k at x = a, and all hypotheses for L’Hôpital’s rule are satisfied.
Applying L’Hôpital’s rule k times gives

lim
x→a

hk(x) = lim
x→a

dk

dxk
(
f(x)− P (x)

)
dk

dxk
(x− a)k

=
f (k)(a)− P (k)(a)

k!
= 0.

Therefore the remainder Rk(x) = hk(x) (x− a)k tends to zero, and letting k → ∞ yields

f(x) =

∞∑
n=0

f (n)(a)

n!
(x− a)n.

■

Theorem 27 Goldbach-Euler Theorem
Statement:

Let M be the set of positive integer which is a perfect power, then∑
m∈M

1

m− 1
= 1.
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Proof:
Every m ∈ M can be uniquely written as m = ak with a ≥ 2 and k ≥ 2. Hence

∑
m∈M

1

m− 1
=

∞∑
k=2

∞∑
a=2

1

ak − 1
=

∞∑
k=2

∞∑
a=2

∞∑
i=1

a−ik =

∞∑
n=2

∞∑
k=2

n−k =

∞∑
n=2

1

n(n− 1)
=

∞∑
n=2

( 1

n− 1
− 1

n

)
= 1.

■

Lemma 7
Statement:

Let n be an odd positive integer. Then for all x, y ∈ C,

xn − yn =

n−1∏
k=0

(
ζkn x− ζ−k

n y
)
.

Proof:
Since the nth roots of unity are 1, ζn, ζ

2
n, . . . , ζ

n−1
n , we have the factorization

zn − 1 =

n−1∏
k=0

(
z − ζkn

)
.

Substitute z = x/y (with y 6= 0) to get

xn

yn
− 1 =

n−1∏
k=0

(x
y
− ζkn

)
.

Multiplying both sides by yn yields

xn − yn =

n−1∏
k=0

(
x− ζkn y

)
. (2.13)

Now, because n is odd, the map k 7→ −k (mod n) permutes {0, 1, . . . , n− 1}. Hence

n−1∏
k=0

(
x− ζkn y

)
=

n−1∏
k=0

(
x− ζ−k

n y
)
.

On the other hand,
n−1∏
k=0

(
x− ζ−k

n y
)
=

n−1∏
k=0

ζ−k
n

n−1∏
k=0

(
ζkn x− ζ−k

n y
)
.

But
n−1∑
k=0

(−k) = −n(n− 1)

2
, and since n is odd this exponent is a multiple of n. Therefore∏n−1

k=0 ζ
−k
n = 1. Substituting back gives

xn − yn =

n−1∏
k=0

(
ζkn x− ζ−k

n y
)
,

as claimed. ■
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1.3 Polynomial
Remark: All uppercase letters in this section are a polynomial.

Theorem 28 Little Bézout’s Theorem
Statement:

For any r ∈ C and P (x) ∈ C[x], ∃! Q(x) ∈ C[x] such that

P (x) = (x− r)Q(x) + P (r).

Proof:

Using the identity xk− rk = (x− r)Sk, where Sk =

k−1∑
i=0

xirk−1−i, S1 = 1, and writing P (x) =
n∑

i=1

aix
i,

obtain
P (x)− P (r) =

n∑
k=0

ak
(
xk − rk

)
= (x− r)

n∑
k=1

akSk,

we are done. ■

Theorem 29 Factor Theorem

Statement:

For P ∈ C[x], if α is a root of P , then P (x) = (x− α)Q(x) for some Q.

Proof: It is true by Little Bézout’s Theorem since P (α) = 0. ■

Theorem 30 Complex Conjugate Root Theorem

Statement:

Let P ∈ R[x] and z ∈ C. Then
P (z) = 0 ⇔ P (z) = 0.

Proof:
Write

P (x) =

n∑
i=0

ai x
i, ai ∈ R.

Assume P (z) = 0. Taking complex conjugates gives

0 = P (z) =

n∑
i=0

(aizi) =

n∑
i=0

ai z
i = P (z).

■
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Theorem 31 Fundamental Theorem of Algebra
Statement:

Form 1:
Let P ∈ C[x] be a non-zero polynomial such that deg P = n, then P has exactly n complex
roots, not necessary distinct.

Form 2:
Let P ∈ C[x] be a non-constant polynomial, then P has at least one complex root.

Proof : (by Frode Terkelsen)
For non-constant P ∈ C[x], since lim

|z|→∞
|P (z)| = +∞, there exists z0 ∈ C such that

|P (z0)| ≤ |P (z)|, ∀z ∈ C.

We now prove P (z0) = 0, hence z0 is a root of P .

Assume P (z0) 6= 0. WLOG let z0 = 0, P (z0) = 1, otherwise we can replace P (z) by P (z + z0)

P (z0)
.

Write
P (z) = 1 + azn + zn+1Q(z),

where n ∈ Z>0, a 6= 0, and Q ∈ C[x].
Choose w such that awn ∈ R<0 and |wQ(w)| < 1

2 |a|. Then

|P (w)| ≤ 1 + awn +
∣∣wn+1Q(w)

∣∣ < 1 + 1
2 aw

n < 1,

a contradiction Therefore the theorem is proved. ■

Remark: How can Form 2 implies Form 1? Let α1 be a root of P , then P (x) = (x− α1)P1(x), for
some P1 with deg P1 = n− 1. Then we continue downgrade P1(x) until
P (x) = (x− α1)(x− α2) · · · (x− αn−1)(ax+ b). It is clear that ax+ b has an unique root −b

a , so P
will have n complex roots.

Theorem 32 Mahler’s Coefficient
Statement:

For P ∈ C[x] with deg P = n, ∃! a0, a1, · · · , an ∈ C such that

P (x) =

n∑
k=0

ak

(
x

k

)
.

Those ak is called the Mahler’s Coefficient.

Proof: Apply induction on n: The case n = 0 is trivial, suppose Mahler’s Coefficient exists for all
polynomials with degree at most n− 1, then consider P such that deg P = n and let its leading
coefficient be a,
we take an such that

deg
(
P (x)− an

(
x

n

))
= n− 1.

Note that such an is unique, which is an = n!a, also by inductive hypothesis, there exists unique
a0, a1, ..., an−1 such that

P (x)− an

(
x

n

)
=

n−1∑
k=0

ak

(
x

k

)
.

■
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Lemma 8

Statement:

If ran(P ) ⊆ Z, then the Mahler’s Coefficient of P are integers.

Proof:
Let a0, a1, ..., adeg P be Mahler’s Coefficient of P , we apply induction: Note that a0 = P (0) ∈ Z, now
suppose a0, ...ak−1 ∈ Z, then consider

P (k) = a0

(
k

0

)
+ a1

(
k

1

)
+ · · ·+ ak−1

(
k

k − 1

)
+ ak,

this equation give us ak ∈ Z. ■

Theorem 33 Rational Root Theorem

Statement:

Form 1: For P (x) =
n∑

i=0

aix
i ∈ Z[x], if p

q
is a rational root of P for (p, q) = 1, then p | a0 and

q | an.

Form 2: If P ∈ Z[x] is monic, then all rational roots of P are integer.

Proof:
Multiplying qn on both sides of equation P

(p
q

)
= 0 gives

anp
n + a0q

n +

n−1∑
i=i

aip
iqn−i = 0,

which means p | a0 and q | an. ■

Definition 3 Elementary Symmetric Polynomial

Description:

Elementary Symmetric Polynomial of xi is defined as

σk =
∑

I⊆[n],|I|=k

∏
i∈I

xi.

e.g σ1 =
∑
i

xi, σ2 =
∑
i<j

xixj , σ3 =
∑

i<j<k

xixjxk, · · · , σn = x1x2 · · ·xn.
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Definition 4 Symmetric Polynomial

Description:

P is a symmetric polynomial if for any permutation y1, y2, · · · , yn of x1, x2, · · · , xn, has
P (y1, y2, ..., yn) = P (x1, x2, · · · , xn).

Theorem 34 Fundamental Theorem of Elementary Symmetric Polynomial

Statement:

For any symmetric polynomial P (x1, x2, . . . , xn), there exists a unique polynomial

Q
(
σ1, σ2, . . . , σn

)
such that

P (x1, x2, . . . , xn) = Q
(
σ1, σ2, . . . , σn

)
,

where σi is the elementary symmetric polynomial of xi.

Proof:
Check out Symmetric Polynomials: The Fundamental Theorem and Uniqueness by Nicholas Kender.
https://www.math.union.edu/~hatleyj/student_theses/kender.pdf

Theorem 35 Vieta’s Theorem

Statement:

Let P (x) =
n∑

i=0

ai x
i, an 6= 0, and let r1, r2, . . . , rn be its roots, then for each 0 ≤ k ≤ n− 1,

ak = (−1)n−k an σn−k,

where σi is the elementary symmetric sum of ri.

Proof:
Note that

P (x) = an

n∏
i=1

(x− ri) = an

n∑
k=0

(−1)n−k σn−k x
k,

Matching coefficients of xk in
n∑

i=0

ai x
i gives

ak = (−1)n−k an σn−k,

as claimed. ■

https://www.math.union.edu/~hatleyj/student_theses/kender.pdf
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Theorem 36 Newton’s Identities

Statement:

Consider P (x) =
n∑

i=0

aix
i, with complex roots r1, r2, ..., rn, for d ∈ Z, define pd =

n∑
i=1

ri
d, then

Form 1:

kan−k +

k−1∑
i=0

an−ipk−i = 0, ∀1 ≤ k ≤ n

if consider σi be the elementary symmetric polynomial of xi, one may express the identity as

(−1)kkσk +

k−1∑
i=0

(−1)iσi pk−i = 0.

Form 2: ∀k ∈ Z,
n∑

i=0

aipi+k = 0, ∀k ∈ Z.

Proof: (by Doron Zeilberger)
Let A (n, k) be the set of triples (A, j, ℓ) such that

A ⊆ [n], |A| ≤ k, j ∈ [n], ℓ = k − |A|,

with the extra condition that if ℓ = 0 then j ∈ A. Define

w(A, j, ℓ) = (−1)|A|

(∏
a∈A

xa

)
xℓj .

One checks by grouping terms that

(−1)kkσk +

k−1∑
i=0

(−1)iσi pk−i =
∑

(A,j,ℓ)∈A (n,k)

w(A, j, ℓ).

Now define an involution T : A (n, k) → A (n, k) by

T (A, j, ℓ) =

{(
A \ {j}, j, ℓ+ 1

)
, j ∈ A,(

A ∪ {j}, j, ℓ− 1
)
, j /∈ A.

Since w(T (A, j, ℓ)) = −w(A, j, ℓ) and T 2 = id, all weights cancel in pairs, yielding the desired
identity. ■

Remark: Form 2 is trivial. Note that there are infinitely many identities: one for each choice of k.
This is why a lot of people call the above theorem ”Newton’s identities” and not ”Newton’s identity.”



48 CHAPTER 1. ALGEBRA

Definition 5 Minimal Polynomial
Description:

Let α ∈ A, the unique monic polynomial of least degree such that

P (x) ∈ Z[x] with P (α) = 0

is called the minimal polynomial of α.

Definition 6 Cyclotomic Polynomial
Description:

Cyclotomic Polynomial is the monic polynomial whose roots are the primitive nth roots of
unity, denoted as

Φn(x) =
∏

gcd(k,n)=1
1≤k≤n

(x− ζkn).

Lemma 9
Statement:

For any n ∈ Z>0,

xn − 1 =
∏
d|n

Φd(x).

In particular for prime p,

Φp(x) =

p−1∑
i=0

xi.

Proof: Over C we have the complete factorization into roots of unity:

xn − 1 =
∏
ζn=1

(x− ζ).

Grouping the factors according to the order of ζ yields∏
ζn=1

(x− ζ) =
∏
d|n

∏
gcd(k,d)=1

1≤k≤d

(x− ζkd ) =
∏
d|n

Φd(x).

■

Lemma 10
Statement:

Φn is irreducible over Q[x].

Proof: Φn is minimal polynomial of ζkn, 1 ≤ k ≤ n, hence irreducible over Z[x], also since Φn monic,
we have Φn irreducible over Q[x] by Gauss’s Irreducibility Lemma. ■
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Lemma 11

Statement:

If n > 1 is odd, then
Φ2n(x) = Φn(−x).

Proof:
Let k := 2m+ 1 with gcd(m,n) = 1. Then

ζk2n = ζ2m+1
2n = ζ2m2n ζ2n = ζmn (−1) = −ζmn .

Hence

Φ2n(x) =
∏

gcd(k,2n)=1

(x− ζk2n) =
∏

gcd(m,n)=1

(x− (−ζmn )) =
∏

gcd(m,n)=1

(x+ ζmn ) = Φn(−x).

■

Lemma 12

Statement:

For any n ∈ Z>0, Φn ∈ Z[x] and monic.

Proof: We argue by strong induction on n. For n = 1, Φ1(x) = x− 1 ∈ Z[x]. Assume Φd(x) ∈ Z[x]
and monic for every proper divisor d < n. From the factorization

xn − 1 =
∏
d|n

Φd(x) = Φn(x)
∏

n ̸=d|n

Φd(x).

The product
∏

n ̸=d|n

Φd(x) ∈ Z[x] and monic so we are done. ■
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Theorem 37 Lagrange Interpolation

Statement:

Let (x1, y1), (x2, y2), . . . , (xn, yn) be n distinct points with xi 6= xj for i 6= j. Then the unique
polynomial P (x) of degree at most n− 1 such that

P (xi) = yi, ∀ 1 ≤ i ≤ n,

is given by:

P (x) =

n∑
i=1

yi
∏

1≤j≤n
j ̸=i

x− xj
xi − xj

.

Proof:
Consider a polynomial of the form

f(x) = A0

∏
j ̸=0

(x− xj) +A1

∏
j ̸=1

(x− xj) + · · ·+An

∏
j ̸=n

(x− xj).

Substitute x = x0, we get:

f(x0) = y0 = A0

∏
j ̸=0

(x0 − xj), ⇒ A0 =
y0∏

j ̸=0

(x0 − xj)
.

Substitute x = x1, we get:

f(x1) = y1 = A1

∏
j ̸=1

(x1 − xj), ⇒ A1 =
y1∏

j ̸=1

(x1 − xj)
.

Continue this process for each i = 0, 1, . . . , n, we obtain

f(x) =

n∑
i=0

yi ·

∏
j ̸=i

(x− xj)∏
j ̸=i

(xi − xj)
.

Thus,

f(x) =

n∑
i=0

yi
∏

0≤j≤n
j ̸=i

x− xj
xi − xj

.

■

Lemma 13

Statement:

If P (x) ∈ Z for 1+ deg P consecutive integers x, then P (x) ∈ Z for ∀x ∈ Z.

Proof: Apply induction: The case deg P = 0 is trivial, suppose the statement is true for deg P = n,
then for n+ 1, consider A = {a, a+ 1, ..., a+ n+ 1} such that P (x) ∈ Z for ∀x ∈ A. Note that
deg(∆P (x)) = n− 1 and it’s also integer when take element of A as argument, by inductive
hypothesis ∆P (x) = 0, for ∀x ∈ Z. Consider ∆P (a) = P (a)− P (a− 1) ∈ Z ⇒ P (a− 1) ∈ Z, simply
apply induction to get P (x) ∈ Z for ∀x ∈ Z. ■
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Theorem 38 Descartes’ Rule of Signs
Statement:

Let f(x) ∈ R[x], then the number of positive real roots (counted with multiplicity) is either
equal to the number of sign changes in the sequence of its nonzero coefficients or differs from
it by an even number.
Likewise, the number of negative real roots is either the number of sign changes in the coefficients
of f(−x), or differs from it by an even number.

Proof: We prove the positive root case by induction on the degree n. Let f(x) ∈ R[x] and let v(f)
be the number of sign changes in the sequence of its nonzero coefficients.
If f(x) has a positive real root r > 0, then we can factor

f(x) = (x− r)g(x), with g(x) ∈ R[x].

We will show that:
v(f) ≥ v(g) + 1.

That is, factoring out a positive root reduces the number of sign changes by at least 1.
To see this, write:

f(x) = (x− r)(b0x
n−1 + b1x

n−2 + · · ·+ bn−1),

then:
f(x) = b0x

n + (b1 − rb0)x
n−1 + (b2 − rb1)x

n−2 + · · ·+ (−rbn−1).

Compare the sign sequence of coefficients: each term (bk − rbk−1) is a linear combination of previous
coefficients and real positive number r > 0. At each step, if the sign of bk differs from that of bk−1,
there’s a potential sign change in f(x) even if g(x) had none.
One can verify that factoring out a positive real root from a polynomial will cause either:
- the number of sign changes to drop by exactly one, or
- the number of sign changes to remain unchanged and the root has multiplicity > 1, so we still
subtract an even number from the count.
Thus, the number of positive real roots p (with multiplicity) satisfies

p ≤ v(f), and v(f)− p is even.

A similar argument applies to f(−x), whose positive roots correspond to negative roots of f(x). So
the number of negative real roots is bounded above by the number of sign changes in f(−x), differing
from it by an even number.

■

Lemma 14
Statement:

If P (q) ⊆ Q, for all q ∈ Q. then P ∈ Q[x].

Proof: Let ai be coefficient of P , 1 ≤ i ≤ n. Note that
1 0 · · · 0
1 11 · · · 1n

...
... . . . ...

1 n1 · · · nn



a0
a1
...
an

 =


P (0)
P (1)

...
P (n)


where the square matrix on LHS is Vandermonde Matrix with pairwise different elements in
second column which is invertible. Thus, ai ∈ Q since the coefficient of the inverse of the square
matrix is rational. ■
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Theorem 39 Dyson’s Conjecture
Statement:

Let a1, a2, . . . , an ∈ Z≥0. Then the constant term of
∏

1≤i,j≤n
i ̸=j

(
1− xi

xj

)ai

is

( n∑
i=1

ai

)
!

n∏
i=0

ai!

.

Proof: (by I.J. Good)

Let f(a1, a2, . . . , an) be constant term of
∏

1≤i,j≤n
i≠j

(
1− xi

xj

)ai

,

and let

g(a1, a2, . . . , an) :=

( n∑
i=1

ai

)
!

n∏
i=0

ai!

.

We prove f(a1, . . . , an) = g(a1, . . . , an) by induction on
∑
ai.

When a1 = a2 = · · · = an = 0, both sides are 1, so the base case is clear.
Note that g satisfies the recurrence: If a1, a2, . . . , an > 0, then

g(a1, a2, . . . , an) = g(a1 − 1, a2, . . . , an) + · · ·+ g(a1, a2, . . . , an − 1).

If ak = 0, then
g(a1, . . . , ak−1, 0, ak+1, . . . , an) = g(a1, . . . , ak−1, ak+1, . . . , an).

So it suffices to show that f also satisfies the same recurrence.
When ak = 0, clearly

f(a1, . . . , ak−1, 0, ak+1, . . . , an) = f(a1, . . . , ak−1, ak+1, . . . , an).

When all ai > 0, we must show

f(a1, a2, . . . , an) = f(a1 − 1, a2, . . . , an) + · · ·+ f(a1, a2, . . . , an − 1).

It suffices to prove ∏
1≤i,j≤n

i ̸=j

(
1− xi

xj

)ai

=
∏

1≤i,j≤n
i ̸=j

(
1− xi

xj

)ai

·
n∑

i=1

n∏
j=1
j ̸=i

(
1− xi

xj

)−1

.

That is, we need

1 =

n∑
i=1

n∏
j=1
j ̸=i

(
1− xi

xj

)−1

.

Apply the Lagrange interpolation to the constant function f(x) = 1 at x1, x2, . . . , xn, we obtain:

1 =

n∑
i=1

n∏
j=1
j ̸=i

x− xj
xi − xj

.

Set x = 0, then

1 =

n∑
i=1

n∏
j=1
j ̸=i

(
−xj

xi − xj

)
=

n∑
i=1

n∏
j=1
j ̸=i

(
1− xi

xj

)−1

,

as desired. ■
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Theorem 40 Gauss–Lucas Theorem

Statement:

Let P (z) ∈ C[z] be a nonconstant complex polynomial. Then all roots of P ′(z) lie in the convex
hull of the roots of P (z).

Proof:
Let

P (z) = c

n∏
i=1

(z − zi), c ∈ C,

then,
P ′(z)

P (z)
=

n∑
i=1

1

z − zi
.

Let P ′(w) = 0. If P (w) = 0, then w is a root of both P and P ′, and lies within the root set of P , so
the conclusion holds trivially. Now assume P (w) 6= 0. Then:

n∑
i=1

1

w − zi
= 0.

This gives us
n∑

i=1

w − zi
|w − zi|2

= 0.

Hence:
n∑

i=1

1

|w − zi|2
· w =

n∑
i=1

1

|w − zi|2
· zi.

Taking conjugate again gives us w is a linear combination of z1, . . . , zn, with positive coefficient and
sum to 1, so lies in the convex hull of {zi}.

■

Theorem 41 Combinatorial Nullstellensatz

Statement:

Let F be a field, and let f(x1, x2, . . . , xn) ∈ F[x1, x2, . . . , xn] with deg f = d1 + d2 + ... + dn.
Suppose the monomial xd1

1 x
d2
2 · · ·xdn

n appears in f(x1, . . . , xn) with nonzero coefficient.
If S1, . . . , Sn ⊆ F with |Si| > di for all 1 ≤ i ≤ n, then there exists (s1, . . . , sn) ∈ S1 × · · · × Sn

such that
f(s1, . . . , sn) 6= 0.

Proof: (by R. N. Karasev and F. V. Petrov)
Assume |Si| = di + 1 for 1 ≤ i ≤ n. By Lagrange Interpolation, we have the identity:

[xn−1]g(x) =

n∑
i=1

g(xi)
∏
j ̸=i

1

xi − xj
.

Then for ei ≤ di = |Si| − 1, let g(x) = xei , then∑
si∈Si

seii
∏

ti∈Si\{si}

1

si − ti
= [xdi ]xei = δei,di
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Now consider a monomial xe11 · · ·xenn in f(x1, . . . , xn) with ei ≤ di. Then

∑
s1∈S1

∑
s2∈S2

· · ·
∑

sn∈Sn

se11 s
e2
2 · · · senn

n∏
i=1

∏
ti∈Si\{si}

1

si − ti
=

n∏
i=1

∑
si∈Si

seii
∏

ti∈Si\{si}

1

si − ti

 =

n∏
i=1

δei,di
,

which is I(ei = di, ∀1 ≤ i ≤ n). Thus

[xd1
1 · · ·xdn

n ]f(x1, . . . , xn) =
∑

s1∈S1

∑
s2∈S2

· · ·
∑

sn∈Sn

f(s1, . . . , sn)

n∏
i=1

∏
ti∈Si\{si}

1

si − ti
.

By assumption, the left-hand side is nonzero. Hence implies there exists some
(s1, . . . , sn) ∈ S1 × · · · × Sn such that

f(s1, . . . , sn) 6= 0.

■

Theorem 42 Mason–Stothers Theorem

Statement:

Let f, g, h ∈ C[x] be pairwise coprime, nonconstant polynomials satisfying

f(x) + g(x) + h(x) = 0.

Then the number of distinct complex roots of the product f(x)g(x)h(x) is at least

max{deg f, deg g, degh}+ 1.

Proof:
From f(x) + g(x) + h(x) = 0, we differentiate:

f ′(x) + g′(x) + h′(x) = 0.

Eliminating f(x), we obtain:

f ′(x)(g(x) + h(x)) = f(x)(g′(x) + h′(x)),

which gives:
f ′(x)g(x)− f(x)g′(x) = f(x)h′(x)− f ′(x)h(x) := P (x).

Let (f, f ′) denote the greatest common divisor of f(x) and f ′(x) as a polynomial, and similarly for
(g, g′), (h, h′).
Then:

(f, f ′) | P (x), (g, g′) | P (x), (h, h′) | P (x).

Since f(x), g(x), h(x) are pairwise coprime, the terms (f, f ′), (g, g′), (h, h′) are also pairwise coprime.
So:

(f, f ′)× (g, g′)× (h, h′) | P (x).

Suppose P (x) = 0. Then:

f ′(x)g(x) = f(x)g′(x), f(x)h′(x) = f ′(x)h(x),

which implies f(x)
g(x)

and f(x)

h(x)
are both constant. This contradict to the statement f, g, h are pairwise

coprime and not all constant. Therefore P (x) 6= 0.
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Hence,
deg(f, f ′) + deg(g, g′) + deg(h, h′) ≤ degP.

Now write

f(x) = c

k∏
i=1

(x− xi)
αi ,

with distinct xi and αi ∈ Z>0, 1 ≤ i ≤ k. Then:

f ′(x) = c

k∏
i=1

(x− xi)
αi−1

 k∑
i=1

∏
j ̸=i

(x− xj)

 ,

so

(f, f ′) = c

k∏
i=1

(x− xi)
αi−1 ⇒ deg(f, f ′) =

t∑
i=1

(αi − 1) = deg f − n(f),

where n(f) is the number of distinct roots of f(x).
Also note:

degP (x) = deg(f ′g − fg′) ≤ deg f + deg g − 1.

So:
deg f − n(f) + deg g − n(g) + degh− n(h) ≤ deg f + deg g − 1,

which gives
degh ≤ n(fgh)− 1.

The same argument holds for f(x), g(x). ■

Definition 7 Chebyshev Polynomial of The First Kind

Description:

The Chebyshev polynomial of the first kind Tn is defined by the recurrence relation:

Tn+1(x) = 2xTn(x)− Tn−1(x), n ≥ 1

with T0(x) = 1 and T1(x) = x.

Lemma 15

Statement:

Let Tn be the Chebyshev polynomials of the first kind, then for x ∈ C and n ∈ Z≥0,

Tn(cos(x)) = cos(nx).

Proof:
Let us define fn(x) := cos(nx). We show that the sequence fn(cosx) satisfies the same recurrence as
Tn(x).
Note that

f0(cosx) = cos(0) = 1, f1(cosx) = cosx.
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Using the identity
cos((n+ 1)x) = 2 cosx · cos(nx)− cos((n− 1)x),

we deduce that
fn+1(cosx) = 2 cosx · fn(cosx)− fn−1(cosx).

Therefore, fn(cosx) satisfies the same recurrence as Tn(x) and has the same initial values. ■

Lemma 16
Statement:

For any n ∈ Z≥0, let Tn(x) be the Chebyshev polynomials of the first kind, then the coefficient
of the term xn in Tn(x) is equal to 2n−1 for n ≥ 1, and 1 for n = 0.

Proof: Letting x = cos θ, we start by using the identity:

Tn(x) = cos(nθ) = einθ + e−inθ

2
=

(cos θ + i sin θ)n + (cos θ − i sin θ)n
2

,

we use the identity sin θ =
√
1− x2, and so we obtain:

Tn(x) =
(x+

√
x2 − 1)n + (x−

√
x2 − 1)n

2
.

Then the leading coefficient of Tn can be calculated by,

lim
x→∞

Tn(x)

xn
= lim

x→∞

(
1 +

√
1− 1

x2

)n
+
(
1−

√
1− 1

x2

)n
2

= 2n−1.

■

Lemma 17
Statement:

1. For |x| ≤ 1, we have
|Tn(x)| ≤ 1.

2. Tn(x) has n distinct real roots in [−1, 1], given by

cos
(
(2k − 1)π

2n

)
, 1 ≤ k ≤ n.

3. Tn(x) has n+ 1 extrema in [−1, 1], occurring at

cos
(
kπ

n

)
, 0 ≤ k ≤ n,

and the extrema alternate between 1 and −1.

4. Tn(x) is an even function if n is even, and an odd function if n is odd.

Proof: Trivial by the identity Tn(x) := cos(n cos−1(x)). ■
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Definition 8 Chebyshev Polynomial of Second Kind

Description:

The Chebyshev polynomials of second kind Un(x) are defined recursively by:

Un+1(x) = 2xUn(x)− Un−1(x), n ≥ 1.

with U0(x) = 1 and U1(x) = 2x.

Lemma 18

Statement:

For any integer n ≥ 0 and x ∈ C, Un be the Chebyshev polynomials of the second kind, then

Un(cos θ) sin θ = sin((n+ 1)θ).

Proof: The case θ = kπ is trivial, assume otherwise, define

fn(θ) :=
sin((n+ 1)θ)

sin θ .

We will prove that fn(θ) satisfies the same recurrence as fn(cos θ), hence they are equal.
Note that:

f0(θ) =
sin θ
sin θ = 1, f1(θ) =

sin(2θ)
sin θ =

2 sin θ cos θ
sin θ = 2 cos θ.

and observe that
fn+1(θ) =

sin((n+ 2)θ)

sin θ ,

=
2 cos θ sin((n+ 1)θ)− sin(nθ)

sin θ

= 2 cos θ sin((n+ 1)θ)

sin θ − sin(nθ)
sin θ ,

= 2 cos θ fn(θ)− fn−1(θ).

Hence, fn(θ) satisfies the same recurrence as Un(cos θ), and matches the initial values. ■
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Lemma 19

Statement:

1. Un(x) has n distinct real roots in [−1, 1], given by

cos
( kπ

n+ 1

)
, 1 ≤ k ≤ n.

2. Un(x) has n+ 1 extrema in [−1, 1], occurring at

xk = cos
( kπ

n+ 1

)
, 0 ≤ k ≤ n,

with

Un(1) = n+ 1, Un(−1) = (−1)n(n+ 1), Un

(
xk
)
= (−1)k (1 ≤ k ≤ n− 1).

3. Un(x) is even if n is even, and odd if n is odd.

Proof: Trivial by Un(cos θ) sin θ = sin((n+ 1)θ). ■

Lemma 20

Statement:

Following are the recurrence relations between two kinds of Chebyshev Polynomial:
1. Tn(x) = Un(x)− xUn−1(x).

2. Un(x) =
Tn(x)− xTn+1(x)

1− x2
.

Proof:
Set x = cos θ. Then

Tn(x) = cos(nθ), Un(x) =
sin((n+ 1)θ)

sin θ .

(1)

Un(x)− xUn−1(x) =
sin((n+ 1)θ)− cos θ sin(nθ)

sin θ

=
sin(nθ) cos θ + cos(nθ) sin θ − cos θ sin(nθ)

sin θ
= cos(nθ) = Tn(x).

(2)
Tn(x)− xTn+1(x) = cos(nθ)− cos θ cos((n+ 1)θ) = sin θ sin((n+ 1)θ),

so
Tn(x)− xTn+1(x)

1− x2
=

sin θ sin((n+ 1)θ)

sin2 θ
=

sin((n+ 1)θ)

sin θ = Un(x).

■
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1.4 Sequence
Definition 9 Fibonacci Sequence
Description:

The Fibonacci Sequence (fn)n≥0 is defined by

fn = fn−1 + fn−2, n ≥ 2.

with f0 = 0 and f1 = 1. fn is called the Fibonacci number.

Theorem 43 Binet’s Formula
Statement:

Let (fn)n≥0 be Fibonacci Sequence, we have

fn =
φn − ψn

√
5

.

where φ =
1 +

√
5

2
, ψ =

1−
√
5

2
.

Proof:
Noted that the roots of the quadratic equation x2 − x− 1 = 0 are φ and ψ. We claim that

xn = fnx+ fn−1.

Apply induction: The case n = 1 is trivial, suppose for n our claim is true, then for n+ 1,

xn+1 = x ·xn = x(fnx+fn−1) = fnx
2+fn−1x = fn(x+1)+fn−1x = (fn+fn−1)x+fn = fn+1x+fn.

■

Theorem 44 Cassini’s Identity
Statement:

Let (fn)n≥0 be Fibonacci Sequence, then

fn−1fn+1 − f2n = (−1)n.

for n ∈ Z>0.

Proof:

fn−1fn+1 − f2n =

∣∣∣∣∣fn+1 fn

fn fn−1

∣∣∣∣∣ = det
([

1 1
1 0

]n)
=

∣∣∣∣1 1
1 0

∣∣∣∣n = (−1)n.

■
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Theorem 45 Catalan’s Identity

Statement:

Let (fn)n≥0 be Fibonacci Sequence, then

fn
2 − fn+rfn−r = (−1)n−rfr

2.

For integer 0 ≤ r ≤ n.

Proof:
Using Binet’s formula,

5
(
f2n − fn−rfn+r

)
= (φn − ψn)2 − (φn−r − ψn−r)(φn+r − ψn+r)

= φ2n − 2φnψn + ψ2n −
[
φ2n − φn−rψ n+r − φn+rψ n−r + ψ2n

]
= −2(φψ)n + φn−rψ n+r + φn+rψ n−r

= −2(−1)n + (−1)n−r
(
φ2r + ψ2r

)
= (−1)n−r

(
φr − ψr

)2
= (−1)n−r 5 f2r .

■

Theorem 46 Gelin-Cesàro Identity

Statement:

Let (fn)n≥0 be Fibonacci Sequence, then

fn
4 − fn−2fn−1fn+1fn+2 = 1.

for integer n ≥ 2.

Proof:
WLOG let 2 | n, by Catalan’s Identity (r = 1, 2),

fn+1fn−1 − fn
2 = 1 = fn

2 − fn+2fn−2,

then
fn

4 − 1 = (fn
2 − 1)(fn

2 + 1) = fn−2fn−1fn+1fn+2.

■

Theorem 47 d’Ocagne’s Identity

Statement:

Let (fn)n≥0 be Fibonacci Sequence, then

fm fn+1 − fm+1 fn = (−1)n fm−n.

for integers m ≥ n ≥ 0.
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Proof:
By Binet’s formula we compute

fm fn+1 − fm+1 fn =
1

5

[
(φm − ψm)(φn+1 − ψn+1)− (φm+1 − ψm+1)(φn − ψn)

]
=

1

5

[
φmψn(ψ − φ)− ψmφn(ψ − φ)

]
=
ψ − φ

5

(
φmψn − ψmφn

)
= −

√
5

5

(
φm−n − ψm−n

)
= (−1)n

φm−n − ψm−n

√
5

= (−1)n fm−n.

■

Theorem 48 Vajda’s Identity

Statement:

Let (fn)n≥0 be Fibonacci Sequence, then

fn+r fn−s − fn fn+r−s = (−1)n−s fr fs.

For integers n,m, r, s with n ≥ s.

Proof:
By Binet’s formula, we compute

fn+r fn−s − fn fn+r−s

=
1

5

[
(φn+r − ψn+r)(φn−s − ψ n−s)− (φn − ψn)(φn+r−s − ψ n+r−s)

]
=

1

5

[
φn−sψ n−s(φrψ−s − ψrφ−s)− ψ n−sφn−s(φrψ−s − ψrφ−s)

]
=
φn−s − ψn−s

5
(φrψ−s − ψrφ−s)

=
(φr − ψr)(φs − ψs)

5
(−1)n−s = (−1)n−sfr fs.

■

Theorem 49 Honsberger’s Identity

Statement:

Let (fn)n≥0 be Fibonacci Sequence, then

fm−1fn + fm fn+1 = fn+m.

for integers m ≥ 1 and n ≥ 0.

Proof:



1.4. SEQUENCE 63

By Binet’s formula, we have

fm−1fn + fm fn+1 =
φm−1 − ψm−1

√
5

φn − ψn

√
5

+
φm − ψm

√
5

φn+1 − ψn+1

√
5

=
1

5

[
φm+n−1 − φm−1ψn − ψm−1φn + ψm+n−1

+ φm+n+1 − φmψn+1 − ψmφn+1 + ψm+n+1
]

=
1

5

[
φm+n−1(1 + φ2) + ψm+n−1(1 + ψ2)

− φm−1ψn (1 + φψ)− ψm−1φn (1 + φψ)
]

=
1

5

[
φm+n−1(1 + φ2) + ψm+n−1(1 + ψ2)

]
(φψ = −1)

=
1

5

[
φm+n−1(2 + φ) + ψm+n−1(2 + ψ)

]
(φ2 = φ+ 1, ψ2 = ψ + 1)

=
1

5

[
φm+n−1 5 +

√
5

2
+ ψm+n−1 5−

√
5

2

]
=
φm+n − ψm+n

√
5

= fm+n.

■

Definition 10 Lucas Sequence

Description:

The Lucas Sequence (Ln)n≥0 is defined by

Ln = Ln−1 + Ln−2, n ≥ 2,

with L0 = 2 and L1 = 1. Ln is called the Lucas number.

Theorem 50 Closed Form of the Lucas Sequence

Statement:

The closed form of Lucas Sequence (Ln)n≥0 is given by

Ln = φn + ψn,

where φ =
1 +

√
5

2
, ψ =

1−
√
5

2
.

Proof:
Consider the characteristic polynomial of the recurrence:

r2 − r − 1 = 0,
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whose two roots are φ and ψ.
Hence the general solution of the recurrence is

Ln = Aφn +B ψn

for constants A,B. Using the initial conditions:{
L0 = 2 = A+B,

L1 = 1 = Aφ+B ψ,

we solve for A and B. Since φ+ ψ = 1, one finds

A = 1, B = 1.

Therefore
Ln = φn + ψn,

as claimed. ■

Definition 11 Farey Sequence

Definition:

The Farey sequence of order n is the ascending sequence of all irreducible fractions a
b

with
0 ≤ a ≤ b ≤ n and gcd(a, b) = 1.

Lemma 21

Statement:

Let a
b

and a′

b′
be consecutive terms in the Farey sequence of order n, with a

b
<
a′

b′
. Then

b+ b′ ≥ n+ 1, a′b− ab′ = 1.

Proof:
We try to confirm a′

b′
. Consider x, y ∈ Z s.t

bx− ay = 1 and n− b < y ≤ n,

there ∃ such x, y because there is a solution for ay ≡ −1 (mod b) which is −a−1 (mod b) and
consider the complete residue system mod b, {n, n− 1, ..., n− (b− 1)} := R, pick y ∈ R and
y ≡ −a−1 (mod b).

Now we prove that infact a
′

b′
=
x

y
. Suppose not, recall that a

b
and a′

b′
are consecutive term, and x

y
also

one of the term in Ferray Sequence of order n (obviously we have 0 ≤ y ≤ n and gcd(x, y) = 1), also

x

y
=
a

b
+

1

by
>
a

b
⇒ x

y
>
a′

b′
,
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so
x

y
− a′

b′
=
b′x− x′y

b′y
≥ 1

b′y
.

Similarly,
a′

b′
− a

b
≥ 1

bb′
,

hence
1

by
=
x

y
− a

b
≥ 1

b′y
+

1

bb′
⇒ b′ ≥ y + b > n,

contradiction.
So we have a′

b′
=
x

y
which also means that

x = a′, y = b′.

now
ba′ − b′a = bx− ay = 1, b+ b′ = b+ y > n.

■

Definition 12 Characteristic Polynomial of Linear Recurrence Relation

Statement:

Let
an+k = c1 an+k−1 + c2 an+k−2 + · · ·+ ck an, n ≥ 0,

be a linear homogeneous recurrence with constant coefficients. Its characteristic polynomial
is the polynomial degree k .

p(x) = xk − c1x
k−1 − c2x

k−2 − · · · − ck.

Remark: consider linear transformation

A =


c1 c2 · · · ck−1 ck
1 0 · · · 0 0
0 1 · · · 0 0
...

... . . . ...
...

0 0 · · · 1 0

 ,

then we have

A

an+k−1

an+k−2

...
an

 =

 an+k

an+k−1

...
an+1


then the characteristic polynomial of A is actually the definition of characteristic polynomial of the
linear recurrence.
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Theorem 51 Closed Form Solution of a Linear Recurrence

Statement:

Let (an)n≥0 satisfy the linear homogeneous recurrence

an+k = c1 an+k−1 + c2 an+k−2 + · · ·+ ck an,

and let the complex roots of its characteristic polynomial be λ1, λ2, ..., λm with multiplicities

e1, e2, ..., em such that
m∑
i=1

ei = k Then the general term admits the closed form

an =

m∑
i=1

Pi(n)λ
n
i ,

where each Pi(n) is a polynomial with degPi < ei.

Proof: We use linear algebra: define the forward shift operator E by

Ean = an+1.

Then the recurrence is equivalent to

p(E) an =
(
Ek − c1E

k−1 − · · · − ckI
)
an = 0,

where I is the identity operator. Since

p(x) =

m∏
i=1

(x− λi)
ei =⇒ p(E) =

m∏
i=1

(E − λiI)
ei ,

we have
m∏
i=1

(E − λiI)
ei an = 0.

Since the factors (E − λiI)
ei are pairwise coprime as polynomials in E, we have

ker p(E) =

m⊕
i=1

ker
(
E − λiI

)ei
.

For a fixed root λ of multiplicity e, the equation

(E − λI)e un = 0

expands to a linear difference equation of order e, whose general solution is

un =

e−1∑
j=0

Cj n
j λn,

i.e. a polynomial in n of degree < e times λn. Hence

dim(ker(E − λiI)
ei) = ei, 1 ≤ i ≤ m

with basis {njλni : 0 ≤ j < ei}. Summing over all i yields

an =

m∑
i=1

ei−1∑
j=0

Ci,j n
j λni =

m∑
i=1

Pi(n)λ
n
i ,

with degPi < ei. This completes the proof. ■
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1.5 Complex Number
Remark: In this section, we use i :=

√
−1 as the imaginary unit.

Theorem 52 De Moivre’s Theorem

Statement:

For any θ ∈ R and n ∈ Z,

(cos θ + i sin θ)n = cos(nθ) + i sin(nθ).

Proof:
We first prove that it is true for all n ∈ Z≥0. The base case is trivial. Assume for some k ∈ Z≥0,

(cos θ + i sin θ)k = cos(kθ) + i sin(kθ).

Then

(cos θ + i sin θ)k+1 = (cos θ + i sin θ)k(cos θ + i sin θ) = (cos(kθ) + i sin(kθ))(cos θ + i sin θ)

= cos kθ cos θ − sin kθ sin θ + i
(
cos kθ sin θ + sin kθ cos θ

)
= cos

(
(k + 1)θ

)
+ i sin

(
(k + 1)θ

)
,

completing the step.
For n < 0, write n = −m with m > 0. Then

(cos θ + i sin θ)−m =
(
(cos θ + i sin θ)m

)−1
= cos(−mθ) + i sin(−mθ) = cos(nθ) + i sin(nθ),

using the fact that cos is even and sin is odd.
■

Theorem 53 Euler’s Formula

Statement:

For any θ ∈ R, one has
eiθ = cos θ + i sin θ.

Proof: (Power-series proof )
Recall the Taylor expansions for real x:

ex =

∞∑
n=0

xn

n!
, cosx =

∞∑
k=0

(−1)k
x2k

(2k)!
, sinx =

∞∑
k=0

(−1)k
x2k+1

(2k + 1)!
.

Substitute x = iθ into the exponential series:

eiθ =

∞∑
n=0

(iθ)n

n!
=

∞∑
k=0

(iθ)2k

(2k)!
+

∞∑
k=0

(iθ)2k+1

(2k + 1)!
.

Noting i2k = (−1)k and i2k+1 = (−1)k i, this becomes

eiθ =

∞∑
k=0

(−1)k
θ2k

(2k)!
+ i

∞∑
k=0

(−1)k
θ2k+1

(2k + 1)!
= cos θ + i sin θ.

■
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Theorem 54 Euler’s Identity
Statement:

eiπ + 1 = 0.

Proof:
by Euler’s formula. ■

Theorem 55 Gauss Sum
Statement:

Let p be an odd prime, then

p−1∑
k=1

ζ k2

p =

±√
p, p ≡ 1 (mod 4),

±i√p, p ≡ 3 (mod 4).

Proof:
Define the polynomial

gp(x) :=

p−1∑
k=1

(
k

p

)
xk.

where
(
k

p

)
is the Legendre Symbol. Our goal is to show

gp(ζp)
2 =

(
−1

p

)
p.

Recall that (
a

p

)
= 0 whenever p | a.

Then one may equally write

gp(x) =

p−1∑
k=0

(
k

p

)
xk.

Observe

gp(ζp)
2 =

p−1∑
j=0

p−1∑
k=0

(
j

p

)(
k

p

)
ζ j+k
p .

Since ζpp = 1, reduce exponents mod p and collect like terms to get

gp(ζp)
2 =

p−1∑
k=0

akζ
k
p , (1.1)

where for each n ∈ Zp,

an =
∑

j+k≡n (mod p)

(
j

p

)(
k

p

)
. (1.2)

Since

gp(1) =

p−1∑
k=1

(
k

p

)
= 0
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(because Z×
p has equally many residues and non-residues), it follows gp(1)2 = 0 and hence

p−1∑
k=0

ak = 0. (1.3)

By (1.2),

a0 =
∑

j+k≡0 (mod p)

(
j

p

)(
k

p

)
=

p−1∑
j=0

(
−j
p

)(
j

p

)
.

But (
−j
p

)(
j

p

)
=

(
−1

p

)(
j2

p

)
=

0, j = 0,(
−1

p

)
, 1 ≤ j ≤ p− 1,

so

a0 =

p−1∑
j=1

(
−1

p

)
=

(
−1

p

)
(p− 1). (1.4)

For n ∈ {1, . . . , p− 1}, by (1.2)

an =
∑

j+k≡n (mod p)

(
j

p

)(
k

p

)
.

Set j = nj′, k = nk′. Then j′ + k′ ≡ 1 (mod p) and

an =
∑

j′+k′≡1 (mod p)

(
nj′

p

)(
nk′

p

)
=

∑
j′+k′≡1 (mod p)

(
j′

p

)(
k′

p

)
= a1,

hence
a1 = a2 = · · · = ap−1. (1.5)

Combining (1.3) and (1.5) gives

a0 + (p− 1) a1 = 0 =⇒ a1 = − a0
p− 1

.

By (1.4),

a1 = −
(
−1

p

)
,

so from (1.1)
gp(ζp)

2 =
(−1

p

)(
(p− 1)− (ζp + ζ2p + · · ·+ ζp−1

p )
)
.

But 1 + ζp + · · ·+ ζp−1
p = 0, hence ζp + · · ·+ ζp−1

p = −1, and

gp(ζp)
2 =

(−1
p

)
p.

This completes the proof of the Gauss sum formula. ■
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1.6 Function
Definition 13 Injection
Description:

A function f : X → Y is injective iff:

f(x) = f(x′) ⇒ x = x′.

In other words ∀x ∈ X, ∃ different y ∈ Y such that x map to y by f , so we can conclude that
if there’s an injection maps X to Y , then |X| ≤ |Y |.

Definition 14 Surjection
Description:

A function f : X → Y is surjective iff:

∀y ∈ Y, ∃x ∈ X such that f(x) = y,

which also gives us that if there’s a surjection maps X to Y , then |X| ≥ |Y |.

Definition 15 Bijection
Description:

A function f : X → Y is bijective iff it is both injective and surjective, so if there exists a
bijection maps X to Y or the oher way round, then |X| = |Y |.

Definition 16 Involution
Description:

A function f : X → X is an involuon iff

f(f(x)) = x, ∀x ∈ X.

Lemma 22
Statement:

f is an involution ⇒ f is bijective.

Proof: omitted. ■
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Definition 17 Concave and convex function

Description:

f : dom(f) → R is called a concave function if ∀x, y ∈ dom(f) and ∀λ ∈ [0, 1], the inequality

f(λx+ (1− λ)y) ≥ λf(x) + (1− λ)f(y)

always holds. (for convex, change the inequality sign to ≤)
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Chapter 2

Combinatorics

2.1 Combinatorial Identity
Definition 18 Gaussian Binomial Coefficient

Description:

n, k, q ∈ Z≥0, q > 1, we defined Gaussian Binomial Coefficient as:(
n

k

)
q

=
(qn − 1)(qn−1 − 1) · · · (qn−k+1 − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1),

for k ≤ n, and it’s equal to 0 when k > n.

Theorem 56 Pascal’s Identity

Statement:

Form 1:
For k, n ∈ Z>0, (

n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
.

Form 2: (Gaussian Binomial Coefficient’s version)
For n, k, q ∈ Z>0, q > 1, (

n

k

)
q

= qk
(
n− 1

k

)
q

+

(
n− 1

k − 1

)
q

.

Proof:
Proof of Form 1
The case k ≥ n is trivial. Consider k < n, then(

n− 1

k − 1

)
+

(
n− 1

k

)
=

(n− 1)!

(k − 1)!(n− k)!
+

(n− 1)!

k!(n− k − 1)!
= (n− 1)! · n

k!(n− k)!
=

(
n

k

)
.

□

Proof of Form 2

77
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Again assume k < n, let qk − 1 = xk, then the equation we want to prove is equivalent to∏n
i=n−k+1 xi∏k

i=1 xi
= qk

∏n−1
i=n−k xi∏k
i=1 xi

+

∏n−k+1
i=n−1 xi∏k−1
i=1 xi

⇔ xn = qkxn−k + xk.

which is true. ■

Theorem 57 Root of Unity Filter

Description:

The technique root of unity filter allow us to extract numbers that divisible by n using nth
roots of unity

I(k | n) = 1

k

k−1∑
t=0

ζtnk .

We can also express in polynomial form

1

k

k−1∑
t=0

P (ζtk) =
∑
k|t≤n

at,

where ai, 1 ≤ i ≤ n are coefficient of P .
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2.2 Extremal Combinatorics
Theorem 58 Pigeonhole Principle

Statement:

If m objects are put into n boxes, then ∃ one box contains ≥
⌊
m− 1

n

⌋
+1 object, and one box

contains ≤
⌊m
n

⌋
object.

Proof: Suppose in contrary, if all boxes contain ≤
⌊
m− 1

n

⌋
objects, then total object

≤ n

⌊
m− 1

n

⌋
< m, contradiction. Similarly we can prove the other case. ■

Theorem 59 Well-Ordering Principle

Statement:

For S ⊆ Z≥0 and S 6= ∅, then there exists m ∈ S such that

m ≤ s ∀ s ∈ S.

Proof:
Assume, for contradiction, that there is a non-empty S ⊆ Z≥0 with no least element. Choose any
s1 ∈ S. Since s1 is not minimal, there must exist s2 ∈ S with s2 < s1. Continuing in this way
produces an infinite strictly decreasing sequence

s1 > s2 > s3 > · · ·

of natural numbers, which is impossible since the smallest element in Z≥0 is 0. Hence S must have a
least element. ■
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2.3 Probability
Definition 19 Expected Value

Description:

The expected value of a discrete random variable X is define as

E[X] :=
∑
x

x · P(X = x),

while for continuous random variable,

E[X] :=

∫
R
xfX(x) dx,

where fX is the probability density function.

Following is the list of the expected value of some distribution: the value for E[X] of
Binomial Distribution X ∼ B(n, p) is np,
Bernuolli Distribution X ∼ Bern(p) is p,
Geometric Distribution X ∼ Geo(p) is 1

p ,
Normal Distribution X ∼ N(µ, σ2) is µ,
Standard Normal Distribution X ∼ N(0, 1) is 0.
Poisson Distribution X ∼ Po(λ) is λ.
Exponential Distribution X ∼ exp(λ) is 1

λ .

Theorem 60 Linearity of Expectation

Statement:

For random variables X1, X2, · · · , Xn, we have

E
[ n∑

i=1

Xi

]
=

n∑
i=1

E[Xi].

Proof: We prove the case n = 2; the general case follows by induction. All summations below are
over the ranges of the corresponding variables.

E[X + Y ] =
∑
i

∑
j

( i+ j )P
(
(X = i) ∩ (Y = j)

)
=
∑
i

∑
j

iP
(
(X = i) ∩ (Y = j)

)
+
∑
i

∑
j

j P
(
(X = i) ∩ (Y = j)

)
=
∑
i

i
∑
j

P
(
(X = i) ∩ (Y = j)

)
+
∑
j

j
∑
i

P
(
(X = i) ∩ (Y = j)

)
=
∑
i

iP(X = i) +
∑
j

j P(Y = j) = E[X] + E[Y ].

■
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Definition 20 Indicator variable

Description:

An Indicator variable is a random variable that takes only 0 or 1 as value to indicate whether
a subject satisfy given condition or not, let Xi be the indicator variable of xi ∈ S, then

Xi =

{
1, xi ∈ S,

0, otherwise,

we also have a useful result which is

E[Xi] = P(xi ∈ S),

and hence we can deduce that

E[# xi ∈ S] =

n∑
i=1

P(xi ∈ S).

Theorem 61 Union Bound

Statement:

For events A1, A2, · · · , An, if
n∑

i=1

P(Ai) < 1

then there ∃ a non-zero event such that none of Ai occur.

Proof: If @ such event, then Ai should cover up all the possibility that might occur which mean
n∑

i=1

P(Ai) ≥, 1

contradiction. ■

Theorem 62 Boole’s Inequality

Statement:

For events A1, A2, · · · , An,

P
( n⋃

i=1

Ai

)
≤

n∑
i=1

P(Ai).

Proof: Apply induction on n: The case n = 1 is trivial, suppose it is true for n, then for n+ 1, by
Inclusive-exclusive Principle,

P
( n+1⋃

i=1

Ai

)
= P

( n⋃
i=1

Ai

)
+ P(An+1)− P

(
An+1 ∩

n⋃
i=1

Ai

)
≤ P

( n⋃
i=1

Ai

)
+ P(An+1) ≤

n+1∑
i=1

P(Ai).
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■

Theorem 63 Bonferroni’s Inequality

Statement:

For events A1, A2, · · · , An,

P
( n⋂

i=1

Ai

)
≥ 1−

n∑
i=1

P(A′
i).

Proof: Similarly apply induction, again we have a trivial base case and suppose n is true, then for
n+ 1, we have

P
( n+1⋂

i=1

Ai

)
= P

( n⋂
i=1

Ai ∩An+1

)
= P

( n⋂
i=1

Ai

)
+ P(An+1)− P

( n⋂
i=1

Ai ∪An+1

)
.

Now remains to prove that

P(An+1)− P
( n⋂

i=1

Ai ∪An+1

)
≥ −P(A′

n+1),

which is equivalent to

P
( n⋂

i=1

Ai ∪An+1

)
− P(An+1) ≤ P(A′

n+1) = 1− P(An+1)

and is obviously true. ■

Theorem 64 Lovász Local Lemma

Statement:

For events A1, A2, · · · , An such that they are independent to each other except at most d of
them, consider p = max{P(Ai)}, then if

epd ≤ 1

then there ∃ a non-zero event such that none of Ai occur.
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2.4 Graph Theory
Definition 21 Graph

Description:

A graph is an ordered pairG = (V,E) of multiset E with elements takes in V 2, where V = V (G)
is called the vertex set of G while E = E(G) is called the edge set of G. We can simply
write edge {u, v} as uv.
A graph is called a empty graph if V = E = ∅.

Definition 22 Simple Graph

Description:

A simple graph is a graph G = (V,E) such that it has no loop (edge with same end like v4v4)
or multiple edges (two or more identical edges appear in a graph like v1v3) i.e

E ⊆ {uv | u, v ∈ V, u 6= v} .

otherwise it is called a multigraph.

Definition 23 Order of Graph

Description:

The order of graph is the number of vertices of the graph, denoted as

|G| := |V (G)|.

A graph with |G| ∈ {0, 1} is called trivial graph.

Definition 24 Length of Graph

Description:
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The length of graph is is the number of edges of the graph, denoted as

||G|| := |E(G)|.

A graph with ||G|| = 0 is called a null graph.

Definition 25 Incident

Description:

A vertex v ∈ V is said to be incident with an edge e ∈ E if v ∈ e. In that case v is also called
an end of e.

Definition 26 U-V edge

Description:

If U t V is a partition of the vertex set and u ∈ U, v ∈ V , then uv is called a U–V edge and
the collection of all such edges is denoted

E(U, V ) := {uv ∈ E | u ∈ U, v ∈ V }.

Definition 27 Adjacent

Description:

Two distinct vertices u, v ∈ V are adjacent if u, v ∈ E, in which case we write u ∼ v; while
Two edges e, f ∈ E are adjacent if e 6= f and e ∩ f 6= ∅, i.e. they have a common end.

Definition 28 Neighborhood

Description:
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The neighborhood of a vertex v is the set of vertices that incident to v, denoted as

N(v) := {u ∈ V | u ∼ v}.

while the set of edges incident to v is also defined

E(v) = { e ∈ E | v ∈ e},

Definition 29 Complete Graph

Description:

A graph G = (V,E) is complete if every pair of distinct vertices is adjacent. The complete
graph on n vertices is denoted Kn.

Definition 30 Graph Isomorphism

Description:

Let G = (V,E) and G′ = (V ′, E′) be two graphs. They are isomorphic, written G ∼= G′, if
there exists a bijection

φ : V −→ V ′

such that for all u, v ∈ V ,

{u, v} ∈ E ⇐⇒ {φ(u), φ(v)} ∈ E′.

Such a map φ is called an isomorphism.

v1
φ7−→ v′1, v2

φ7−→ v′3, v3
φ7−→ v′5, v4

φ7−→ v′2, v5
φ7−→ v′4

Definition 31 Graph Invariant

Description:

A graph invariant is any function α defined on all graphs such that

G ∼= G′ =⇒ α(G) = α(G′).



2.4. GRAPH THEORY 89

Definition 32 Subgraph and Supergraph

Description:

Let G = (V,E) and G′ = (V ′, E′) be graphs. If V ′ ⊆ V and E′ ⊆ E, then G′ is a subgraph
of G and G is a supergraph of G′, denoted G′ ⊆ G.

Definition 33 Induced Subgraph

Description:

If G′ = (V ′, E′) ⊆ G = (V,E) and

E′ =
{
uv ∈ E | u, v ∈ V ′},

then G′ is the induced subgraph of G on V ′, denoted

G′ = G[V ′].

Definition 34 Spanning Subgraph

Description:

A subgraph G′ = (V ′, E′) of G = (V,E) is spanning if V ′ = V .

Definition 35 Complement Graph

Description:

The complement G of a simple graph G = (V,E) is the graph on the same vertex‐set V whose
edge‐set is

E(G) = V 2 \ E.

If G ∼= G, G is called self‐complementary.

Definition 36 Line Graph

Description:

The line graph G = (V,E), denoted as L(G) has vertex set E(G), and two vertices e, f ∈ E(G)
are adjacent in L(G) whenever e ∼ f in G.



90 CHAPTER 2. COMBINATORICS

Lemma 23
Statement:

Let Kn be the complete graph whose edges are coloured with k colours. Suppose every triangle
in Kn is either monochromatic or rainbow (all three edges different). Then

n ≤ k(k − 1) + 2.

Proof: Let |G| = n, and let the number of colours be k. If edged of all triangle either all same or all
different colour, WLOG let v incident to ≥ 2 different colour edges and among E(v), colour c appear
the most. Let vv1, ..., vvN be colour c, v′ be colour d, then v1, ..., vN pairwise connected edges with
colour c; colour of all v′v1, ..., v′vN pairwise different and also not c or d, then k ≥ N + 2, also since
colour c appear the most, N ≥ deg v

k
=
n− 1

k
⇒ n ≤ (k − 1)2. ■

.

Definition 37 Degree of Vertex
Description:

The degree of a vertex v ∈ V is the number of edges incident with v, denoted

deg(v) := |E(v)|.

A vertex v ∈ V with deg(v) = 0 is called an isolated vertex.
A vertex v ∈ V with deg(v) = 1 is called a leaf.
A vertex v ∈ V is called an even vertex if deg(v) is even, and an odd vertex if deg(v) is odd.
The minimum degree of G is denoted as

δ(G) = min
v∈V

deg(v),

and the maximum degree of G is denoted as

∆(G) = max
v∈V

deg(v).

The average degree of G is denoted as

d(G) =
1

|V |
∑
v∈V

deg(v).
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Theorem 65 Erdős–Gallai Theorem
Statement:

A nonincreasing sequence of nonnegative integers d = (d1, . . . , dn) is the degree sequence of

some simple graph if and only if
n∑

i=1

di is even and for every 1 ≤ k ≤ n

k∑
i=1

di ≤ k(k − 1) +

n∑
i=k+1

min{di, k}.

Proof: (by S.A. Choudum)

Definition 38 k-Regular Graph
Description:

A graph G = (V,E) is called k-regular if deg(v) = k for every v ∈ V .

Theorem 66 Friendship Theorem
Statement:

Let G be a finite simple graph such that any two vertices have exactly one common neighbor.
Then there exists a vertex adjacent to all other vertices.

Proof:
Suppose, for sake of contradiction, that no vertex is adjacent to every other.
We prove G is k-regular. Pick two non‐adjacent vertices A and B. Let

N(A) = {a1, . . . , ak}, N(B) = {b1, . . . , bℓ},

so deg(A) = k, deg(B) = ℓ. For each ai, its unique common neighbor with B cannot be A, so must
be some bj . If two distinct ai, ai′ shared the same bj , then A and bj would have two common
neighbors, impossible. Hence k ≤ ℓ. By symmetry ℓ ≤ k, so k = ℓ. Thus deg(v) = k for all v ∈ G.

Count ordered triples (A;B,C) where A ∼ B,C, and B ∼ C. First way: choose A in n ways and

then two of its k neighbors, giving n
(
k

2

)
. Second way: choose an edge {B,C} in

(
n

2

)
ways, then its

common neighbor A.
Equating gives

n

(
k

2

)
=

(
n

2

)
,

whence n = k2 − k + 1.
Let A = (aij) be the adjacency matrix of G. The condition “each pair has exactly one common
neighbor”reads

A2 =


k 1 · · · 1
1 k · · · 1
...

... . . . ...
1 1 · · · k

 .
Thus

det(λI −A2) = (λ− (k + n− 1)) (λ− (k − 1))n−1.
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Hence A2 has eigenvalues k + n− 1 = k2 (simple) and k − 1 (multiplicity n− 1). It follows that the
eigenvalues of A are ±k (simple) ,

√
k − 1 (multiplicity a) and −

√
k − 1 (multiplicity b), where

a+ b = n− 1. So tr(A) = 0, the sum of all eigenvalues vanishes:

±k + (a− b)
√
k − 1 = 0,

gives k − 1 | k2, force k = 2, n = 3. Therefor G ∼= K3, contradiction. ■

Theorem 67 Euler’s Handshaking Lemma

Statement:

For G = (V,E), ∑
v∈V

deg v = 2|E|.

Proof : We count every edges exactly twice when we sum up all the degree of vertex since once from
each of its ends. ■

Lemma 24

Statement:

For any graph G,
δ(G) ≤ d(G) ≤ ∆(G).

Proof:
By Pigeonhole Principle. ■

Lemma 25

Statement:

In any graph G, the number of vertices of odd degree is even.

Proof:
By Euler’s Handshaking Lemma,

∑
v∈V

deg(v) = 2|E| is even. Split the sum into contributions

from even‐degree and odd‐degree vertices:∑
v∈V

2|deg(v)

deg(v) +
∑
v∈V

2∤deg(v)

deg(v)

is even. The first sum is even, so the second sum being even and hence must be a sum of an even
number of odd terms. Hence there are an even number of odd vertices. ■
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Lemma 26
Statement:

For the complete graph Kn on n vertices,

||Kn|| =
(
n

2

)
=
n(n− 1)

2
.

Proof:
Every edge of Kn corresponds uniquely to an unordered pair of distinct vertices. There are

(
n
2

)
such

pairs, hence ||Kn|| =
(
n

2

)
=
n(n− 1)

2
. ■

Definition 39 Path and Cycle
Description:

A path P = v0v1 · · · vk is a simple graph with

V (P ) = {v0, v1, . . . , vk}, E(P ) =
{
vi−1vi | 1 ≤ i ≤ k

}
,

where the vertices v0, . . . , vk are pairwise distinct. The path of length k is denoted as Pk.
If v0 = vk, then P is called a cycle. Equivalently, a cycle of length k is denoted Ck.

A subpath of P is any path of the form

vivi+1 · · · vj , 0 ≤ i ≤ j ≤ k.

In particular, we write
(1) Pvi = v0 · · · vi,
(2) viP = vi · · · vk,
(3) viPvj = vi · · · vj ,
(4) v1Pv2P ′v3 = v1Pv2 ∪ v2P ′v3.

Definition 40 Girth and Circumference of Graph
Description:

The girth of G, denoted g(G), is the minimum length of cycle in G while the circumference
of G is the maximum length of cycle in G.

Definition 41 Walk
Description:

A walk in G is a sequence
v0e1v1e2 . . . ekvk

of vertices and edges such that each ei = {vi−1, vi}. Vertices and edges may repeat.
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Definition 42 Trail and Circuit

Description:

A trail e1e2 · · · ek is a walk with pairwise distinct ei, 1 ≤ i ≤ k. If e1 = ek, it is called a
circuit.

Definition 43 Chord of Cycle

Description:

A chord of a cycle C is an edge e /∈ E(C) joining two vertices of C.

Definition 44 Distance Between Vertices

Description:

The distance between two vertices u, v, denoted d(u, v), is the length of a shortest u−v path
in G.

Definition 45 Eccentricity, Diameter and Radius

Description:

The eccentricity of a vertex v, denoted ε(v), is

ε(v) = max
w∈V

d(v, w).

Moreover, The diameter of G is

diam(G) = max
v∈V

ε(v).

and the radius of G is
rad(G) = min

v∈V
ε(v).

Definition 46 Center of Graph

Description:

The center of G is the set of vertices realizing the radius:

C(G) =
{
v ∈ V | ε(v) = rad(G)

}
.

Lemma 27
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Statement:

Every graph G contains

• a path of length δ(G), and

• if δ(G) ≥ 2, a cycle of length at least δ(G) + 1.

Proof:
Let P = v0v1 · · · vk be a longest path in G. Then every neighbor of vk lies on P , so

k ≥ deg(vk) ≥ δ(G).

Thus P has length ≥ δ(G). If δ(G) ≥ 2, pick the smallest index i < k with vi ∼ vk. Then

i ≤ k − deg(vk) ≤ k − δ(G),

and the cycle
vivi+1 · · · vkvi

has length
k − i+ 1 ≥ k − (k − δ(G)) + 1 = δ(G) + 1.

■

Lemma 28
Statement:

g(G) ≤ 2diam(G) + 1.

Proof:
Let C ⊆ G be a shortest cycle, and pick two vertices u, v ∈ C such thatdC(u, v) ≥ diam(G) + 1, but
then obviously

dG(u, v) < diam(G) + 1 ≤ dC(u, v),

so replace the shortest u− v path in C to the shortest u− v path in G we get a cycle shorter then C,
contradiction ■

Lemma 29
Statement:

Let G be a graph with radius rad(G) ≤ k and maximum degree ∆(G) ≤ d. Then

|G| ≤ 1 + kdk.

Proof:
Choose a central vertex c, let

Di = { v ∈ V (G) | d(c, v) = i}

so V (G) =

k⋃
i=0

Di and D0 = {c}. Since ∆(G) ≤ d, we have

|D0| = 1, |D1| ≤ d, |Di| ≤ (d− 1)Di−1 (∀ i ≥ 2),
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hence |Di| ≤ d(d− 1)i, ∀ 0 ≤ i ≤ k.
Then

|G| =

∣∣∣∣∣
k⋃

i=0

Di

∣∣∣∣∣ ≤
k∑

i=0

|Di| ≤ 1 + d

k−1∑
i=0

(d− 1)i ≤ 1 + kd(d− 1)k−1 ≤ 1 + kdk.

■

Definition 47 H-Path
Description:

Let H ⊆ G be a subgraph. A path P ⊆ G is called an H-path if P meet H exactly in its ends
and no internal vertex of P lies in H.

Definition 48 Tree and Forest
Description:

A graph with no cycle is called a tree. A forest is a graph whose every connected component
is a tree (equivalently, a disjoint union of trees).

Lemma 30
Statement:

If T is a tree with at least two vertices, then T has at least two leaves.

Proof:
Let P = v0v1 · · · vk be a longest path in T . Since T has no cycle, neither v0 nor vk can have degree
exceeding 1 (otherwise P could be extended), so deg(v0) = deg(vk) = 1. Thus there are at least two
leaves. ■

Lemma 31
Statement:

Let T be a graph on n vertices. The following five statements are equivalent:

1. T is a tree.

2. For every pair u, v ∈ T there is a unique u−v path in T .

3. T is connected but T \ e is disconnected for all e ∈ T .

4. T has no cycle and ||T || = n− 1.

5. T is connected and ||T || = n− 1.
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Proof:
We sketch the standard cycle of implications:
(1) ⇒ (2): If T is a tree then it is connected and contains no cycle. Existence of at least one u−v
path follows from connectedness; uniqueness holds because two distinct u−v paths would form a
cycle.
(2) ⇒ (3): If there were an edge e whose deletion did not disconnect T , then the two ends of e would
still be joined by a path not using e, contradicting uniqueness.
(3) ⇒ (4): If T is connected and every edge is a bridge, then removing any edge reduces the number
of connected components by one. Starting from T and removing edges one by one until no edges
remain, one sees there must have been exactly n− 1 edges to achieve n isolated vertices. Absence of
any cycle also follows since a cycle edge cannot be a bridge.
(4) ⇒ (5): Trivial, since (4) already asserts no cycle and |E| = n− 1, which in particular implies T is
connected (a disconnected acyclic graph on n vertices with n− 1 edges would have too many edges in
some component).
(5) ⇒ (1): A connected graph with n vertices and n− 1 edges cannot contain a cycle (removing an
edge from a cycle would still leave the graph connected, contradicting the edge–count). ■

Definition 49 Connected Graph

Description:

An undirected graph G is connected if for every pair of vertices u, v ∈ V (G) there exists a
walk from u to v.
A connected component of an undirected graph G is a connected subgraph that is not part
of any larger connected subgraph.

Definition 50 Clique

Description:

A clique in a graph G = (V,E) is a vertex set C ⊆ V such that every two distinct vertices in
C are adjacent (i.e. induce a complete subgraph). The clique number of G, denoted ω(G), is
the cardinality of a largest clique in G.

Theorem 68 Caro–Wei Theorem

Statement:

For any graph G,
α(G) ≥

∑
v∈G

1

1 + deg(v) .

Proof:
Assigned an order to all v ∈ G randomly and uniformly, consider
I = {v ∈ G | v appears before all u ∈ N(v)}, then I is an independent set. Note that for any v ∈ G,

P(v ∈ I) =
1

1 + deg v ,
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let Xi = I(vi ∈ I), then
E[|I|] =

∑
i

P(Xi) =
∑
v∈G

1

1 + deg v .

■

Definition 51 Independent Set
Description:

An independent set in G = (V,E) is a vertex set I ⊆ V such that no two distinct vertices
in I are adjacent. The independence number of G, denoted α(G), is the cardinality of a
largest independent set in G.

Lemma 32
Statement:

For any graph G on n vertices,

ω(G) ≥
∑
v∈G

1

n− deg(v) .

Proof:
Apply the Caro–Wei to the complement G:

α(G) ≥
∑
v∈G

1

1 + degG(v)
=
∑
v∈G

1

n− degG(v)

. Since α(G) = ω(G), the result follows. ■

Theorem 69 Ramsey’s Theorem
Statement:

Every graph G on |V (G)| ≥ 6 vertices satisfies

max{ω(G), α(G)} ≥ 3.

Proof:
Let G be any graph on n ≥ 6 vertices, and pick a vertex v. Since v has n− 1 ≥ 5 other vertices, by
the pigeonhole principle either

|N(v)| ≥ 3 or
∣∣V (G) \

(
N(v) ∪ {v}

)∣∣ ≥ 3.

− If |N(v)| ≥ 3, let x, y, z ∈ N(v). In the subgraph induced by {x, y, z}, either two are adjacent
(giving a clique of size 3 together with v), or none are adjacent (giving an independent set of size 3).
− If |V (G) \ (N(v) ∪ {v})| ≥ 3, pick three vertices non‐adjacent to v. In that set again either two are
non‐adjacent (yielding an independent set of size 3 together with v), or two are adjacent (yielding a
clique of size 3).
In either case we find a clique or independent set of size at least 3, completing the proof. ■
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Definition 52 Directed Graph
Description:

A directed graph is a graph in which each edge is assigned an orientation, called a directed
edge. If e is a directed edge in a digraph, then init(e) denotes its initial vertex and ter(e) its
terminal vertex and if init(e) = u and ter(e) = v, we write u→ v.

Definition 53 In‐Degree and Out-Degree
Description:

The in‐degree of a vertex v in a digraph, denoted deg−(v), is the number of edges directed
into v, while the out‐degree of a vertex v in a digraph, denoted deg+(v), is the number of
edges directed out of v.

Lemma 33
Statement:

In any directed graph, ∑
v∈V

deg+(v) =
∑
v∈V

deg−(v) = |E|.

Proof:
Each directed edge contributes exactly 1 to the out‐degree of its tail and exactly 1 to the in‐degree of
its head; summing over all vertices counts each edge once in each sum. ■

Definition 54 Tournament
Description:

A tournament Kn is an orientation of the complete graph on n vertices: for every pair of
distinct vertices u, v, exactly one of the directed edges u→ v or v → u is present.

Lemma 34
Statement:

In every tournament Kn there exists a vertex v from which every other vertex can be reached
by a directed path of length at most 2.

Proof:
Let v1 be the vertex has the greatest out-degree. Suppose there exists no such vertex, then
∃ v2 /∈ N+(v1) and for all u ∈ N+(v1), v2 → u and v2 → v1, thus |N+(v2)| > |N+(v1)|, contradiction.
■
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Lemma 35
Statement:

A tournament Kn contains a directed triangle if and only if there exist two vertices u,w with
deg+(u) = deg+(w).

Proof:
Sufficiency: WLOG let v → w → v1, ..., vk, k = deg+(w), then ∃ vi → v otherwise
deg+(v) ≥ k + 1 > deg+(w), contradiction

□

Necessity: If ∀ v, w, deg+(v) 6= deg+(w), we prove by induction. Base case is trivial, suppose the
statement true for some n, consider Kn+1, WLOG let deg+(vi) = i+ 1, by inductive hypotesis,
Kn+1 \ vn+1 don’t have a directed triangle, so Kn+1 don’t have either. ■

Lemma 36
Statement:

Every tournament Kn has a Hamiltonian directed path of length n− 1.

Definition 55 k-partite Graph
Description:

A k-partite graph is a graph G =

(
k⊔

i=1

Vi, E

)
such that no edge has both ends in the same

Vi. In particular, a bipartite graph is a graph G = (X t Y,E), which is a 2-partite graph.

Definition 56 Complete k-partite Graph
Description:

The complete k-partite graph, denoted as Kn1,n2,...,nk
, is defined as

Kn \ {e | e ∈ E(Vi, Vi), i ∈ [k]},

i.e. connect everything that can connect across parts.

Definition 57 Turán Graph
Description:

The Turán graph T (n, k) is defined as the complete k-partite graph Kn1,n2,...,nk
, where n1 =

n2 = · · · = nr = m+ 1, nr+1 = · · · = nk = m for n = mk + r with 0 ≤ r < m.
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Lemma 37

Statement:

Let T (n, k) be the Turán graph, and set m =
⌊n
k

⌋
. Then

∣∣∣∣T (n, k))∣∣∣∣ = (
n−m

2

)
+ (k − 1)

(
m+ 1

2

)
.

In particular, for k ≤ 7 one has the succinct expression
∣∣∣∣T (n, k))∣∣∣∣ =

⌊(
1− 1

k

)n2
2

⌋
.

Theorem 70 Turán’s Theorem

Statement:

Let G be a graph on n vertices and fix k ≥ 1. If G contains no (k + 1)-clique, then

||G|| ≤
∣∣∣∣T (n, k)∣∣∣∣,

with equality if and only if G ∼= T (n, k).

weaker version: Let G be an n-vertex graph. If ||G|| >
∣∣∣∣T (n, k))∣∣∣∣ =

⌊(
1 − 1

k

)n2
2

⌋
, then G

contains a clique of size at least k + 1.

Theorem 71 Mantel’s Theorem

Statement:

If G is an n-vertex graph with no triangle, then

||G|| ≤
⌊n2
4

⌋
.

Proof:
Immediate from Turán’s Theorem by setting k = 2. ■

Lemma 38

Statement:

Let G be an n-vertex graph with e = ||G||. Then the number of triangles in G is at least

1

3

(
4e2

n
− e n

)
.

Proof:
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For each edge uv, there are deg(u) + deg(v)− n common neighbors w forming a triangle uvw.
Summing over all e edges counts each triangle three times, giving

3T ≥
∑
uv∈E

(
deg(u) + deg(v)− n

)
=
∑
v

(deg(v))2 − en.

By Cauchy–Schwarz,
∑

v(deg(v))2 ≥ 1
n

(∑
v deg(v)

)2
= 4e2

n , hence T ≥ 1
3 (4e

2/n− en). ■
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2.5 Linear Algebra in Combinatorics
Definition 58 Adjacency Matrix

Description:

Let G = (V,E) be a simple graph with |V | = n and fix an ordering V = {v1, v2, . . . , vn}. The
adjacency matrix of G is the n× n matrix

(aij)1≤i,j≤n, aij =

{
1, if vi ∼ vj ,

0, otherwise.
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Chapter 3

Number Theory

Remark: all alphabet in Number Theory is integer except where otherwise stated.

3.1 Divisibility
Theorem 72 Properties of Divisibility
Statement:

The divisibility relation has the following properties:

1. (reflexivity) n | n. (0 | 0 is valid)

2. (transitivity) a | b, b | c ⇒ a | c.

3. 1 | n and n | 0 both true.

4. a | b ⇔ |a|
∣∣ |b|

5. For 1 ≤ i ≤ n and any ci, if a | bi, then a
∣∣∣ n∑

i=1

cibi.

6. a | n⇔ n

a

∣∣∣ n. (divisor appear in pairs except for perfect square)

Proof:
Properties 1,2,3 and 4 can directly obtain from definition. For property 5, let bi = aki then

n∑
i=1

cibi =

n∑
i=1

akibi = a

n∑
i=1

kibi.

For property 6, let n = ka then n

a
= k | n. ■

Theorem 73 Euclid’s Division Lemma
Statement:

For any a, b,, there ∃! k, r such that 0 ≤ r < b and

a = bk + r.

107
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Proof:
Uniqueness:
Suppose that we have two presentations a = bk + r = bk′ + r′, then |b| > |r − r′| = |(k′ − k)| · |b| ≥ |b|
lead to a contradiction.

□
Existence:
Take k = ba

b c then
0 = a− b · a

b
≤ a− b

⌊a
b

⌋
= r < a− b

(a
b
− 1
)
= b

■

Theorem 74 Gauss’ Divisibility Lemma

Statement:

For coprime a, b,
a | bn ⇒ a | n.

Proof: In Z/aZ, bn ≡ 0 ⇒ n ≡ b−1bn ≡ 0. ■

Theorem 75 Euclid’s Lemma

Statement:

For prime p,
p | ab ⇒ p | a or p | b.

Proof: by Gauss’ Lemma. ■

Lemma 39

Statement:

For any positive integer k, let d be positive divisor of k, then:

1. a− b | ak − bk.

2. ad − bd | ak − bk.

3. If 2 - k, a+ b | ak + bk.

4. If 2 - k
d , ad + bd | ak + bk.

Proof: It’s obvious by the xn ± yn identities. ■

Lemma 40
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Statement:

For m,n, a ∈ Z>0, a ≥ 2,
n | m ⇔ an − 1 | am − 1.

Proof: Let m = kn+ r, 0 ≤ r < n, then

(am − 1)− (ar − 1) = am − ar = akn − 1 = (an − 1)

k−1∑
i=0

aibk−1−i,

which means an − 1 | am − 1 ⇔ an − 1 | ar − 1 ⇔ r = 0 since n > r. ■

Lemma 41
Statement:

If a | b, then either b = 0 or |a| ≤ |b|.

Proof: Consider b 6= 0, a | b⇒ |a|
∣∣ |b|, let |b| = k|a|, then k ≥ 1 ⇒ |b| = k|a| ≥ |a|. ■

Lemma 42
Statement:

Let f ∈ Z[x], then
a− b | f(a)− f(b).

Proof: Let f(x) =
m∑
i=1

cix
i, then a− b

∣∣∣∣ m∑
i=1

ci(a− b)i = f(a)− f(b). ■

Lemma 43
Statement:

Let f ∈ Z[x], then there exists infinitely many b such that f(a) | f(b).

Proof: Take b = a+ k|f(a)|, then by lemma , f(a) | k|f(a)| = b− a | f(b)− f(a) which means
f(a) | f(b) for ∀k ∈ Z. ■

Lemma 44
Statement:

Let 2 - n ≥ 1, then
2n+2 | a2

n

− 1.
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Proof: Observed that

a2
n

− 1 = (a− 1)(a+ 1)

n−1∏
i=2

(a2
i

+ 1),

since n is odd, then (a− 1)(a+1) = a2 − 1 ≡8 0, and we also have a2i+1 are even then we are done. ■
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3.2 Congruence

Theorem 76 Properties of Congruence
Statement:

In mod n, the congruence relation has the following properties:

1. (reflexivity) a ≡ a.

2. (symmetry) a ≡ b⇔ b ≡ a.

3. (transitivity) If a ≡ b and b ≡ c, then a ≡ c.

4. If a ≡ c, b ≡ d, then a± b ≡ c± d and ac ≡ cd.

5. If a ≡ b, then ac ≡ bc (mod n) and ac ≡ bc (mod nc) both true.

6. If ac ≡ bc (mod n), then a ≡ b

(
mod n

gcd(n, c)

)
7. If a ≡ b (mod n), and d | n then a ≡ b (mod d).

Proof: Properties 1,2 are obvious. For 3, n | a− b, b− c⇒ n | a− b+ b− c = a− c. For Property 4,
the former is by definition and the latter is by Property 5 of divisibility. ■

Theorem 77 Euler’s Theorem
Statement:

For coprime a, n,
aφ(n) ≡ 1 (mod n).

Proof: Note that a(Z/nZ)× is a reduce residue class modulo n . Hence

a|(Z/nZ)
×|

∏
s∈(Z/nZ)×

s ≡
∏

s∈(Z/nZ)×
s (mod n) ⇔ aφ(n) ≡ 1 (mod n).

■

Lemma 45
Statement:

Let f ∈ Z[x], then
a ≡ b (mod n) ⇔ f(a) ≡ f(b) (mod n).

Proof: Let f(x) =
m∑
i=1

cix
i, then f(a)− f(b) =

m∑
i=1

ci(a− b)i ≡ 0 (mod a− b). ■
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Theorem 78 Fermat’s Little Theorem

Statement:

For prime p - a,
ap−1 ≡ 1 (mod p).

Proof: By Euler’s Theorem. ■

Theorem 79 Wilson’s Theorem

Statement:

p is prime if and only if
(p− 1)! ≡ −1 (mod p).

Proof:
Necessity:
The case p = 2 is trivial, now discuss odd prime p. Consider

Fp 3 f(x) = xp−1 − 1−
p−1∏
i=1

(x− i),

and we substitute any a ∈ [p− 1] and apply Fermat’s Little Theorem give

f(a) = ap−1 − 1 ≡ 0 (mod p),

which means f has p− 1 roots but deg f ≤ p− 2, by Lagrange’s Theorem (see Chapter of
Polynomial) f(x) ≡ 0 (mod p) for ∀x mod p then substitute x = 0 mod p yields

−1 ≡ (−1)p−1(p− 1)! ≡ (p− 1)! (mod p).

□

Sufficiency:
Suppose p is composite, let prime q | p then

(p− 1)! ≡ −1 (mod p) ⇒ −1 ≡ (p− 1)! ≡ 0 (mod q).

which is a contradiction. ■

Theorem 80 Chinese Remainder Theorem

Statement:
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Form 1:
Let m1,m2, ...,mn be pairwise coprime integer, then for any a1, a2, ..., an, the system

x ≡ a1 (mod m1),

x ≡ a2 (mod m2),
...

x ≡ an (mod mn).

has exactly one solution which is

x ≡
n∑

i=1

aiMiMi
−1 (mod M),

where M =
∏n

i=1mi and Mi =
M
mi
.

Form 2:

Let m1,m2, ...,mn be pairwise coprime integer and M =

n∏
i=1

mi, then the ring

Z/MZ ∼= (Z/m1Z)× (Z/m2Z)× ...× (Z/mnZ).

Proof:
Only need to prove Form 1 because it implies Form 2.

Uniqueness:
Suppose there are two distinct solution for x, called them k, t mod M , then mi | k − t for ∀1 ≤ i ≤ n.
Since mi pairwise coprime, then M | k − t too, which is a contradiction.

□
Existence: Since gcd(Mi,mi) = 1, Then there exists Ni =Mi

−1 mod mi, take

x ≡
n∑

i=1

aiMiNi (mod M),

then we have
x ≡ ajMjNj ≡ aj(1−mjnj) = aj (mod mj), for∀ 1 ≤ j ≤ n

where the existence of such nj is by Bézout’s Lemma. ■

Theorem 81 Freshman’s Dream

Statement:

For any a, b, prime p and i ≥ 0,

(a+ b)p
i

≡ ap
i

+ bp
i

(mod p).

Proof:
Apply induction on i: when i = 1, by lemma

(a+ b)p ≡ ap + bp +

p−1∑
k=1

(
p

k

)
akbp−k ≡ ap + bp (mod p).
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Suppose Freshman’s Dream holds true for some i, then for i+ 1

(a+ b)p
i+1

≡ [(a+ b)p
i

]p ≡ (ap
i

+ bp
i

)p ≡ ap
i+1

+ bp
i+1

(mod p).

■

Theorem 82 Wolstenholme’s Theorem
Statement:

Form 1: For prime p ≥ 5,
p−1∑
i=1

1

i2
≡ 0 (mod p).

Form 2: For prime p ≥ 5,
p−1∑
i=1

1

i
≡ 0 (mod p2).

Form 3: For prime p ≥ 5, (
2p− 1

p− 1

)
≡ 1 (mod p3).

Proof:
Proof of Form 2
Method 1: (by algebraic method)
Compute

2

p−1∑
i=1

1

i
=

p−1∑
i=1

(
1

i
+

1

p− i
) =

p−1∑
i=1

p

i(p− i)
≡ −p

p−1∑
i=1

1

i2
= −p

p−1∑
i=1

i2 = −p
2(p− 1)(2p− 1)

6
≡ 0 (mod p2).

Method 2: (by Taylor Series)
Consider polynomial

f(x) =

p−1∏
i=1

(x− i) = xp−1 + a1x
p−2 + a2x

p−3 + ...+ ap−2x+ (p− 1)!,

for some a1, a2, ..., ap−2. We use the fact xp−1 − 1 ≡ f(x) (mod p) that have been proven at the proof
of Wilson Theorem, cancel out the equal terms from both side give

a1x
p−2 + a2x

p−3 + ...+ ap−2x ≡ 0 (mod p)

for any x. By Lagrange’s Theorem, p | aj , ∀ 1 ≤ j ≤ p− 2. Noticed that f(0) = (n− 1)! = f(p),
we compute

f ′(0) = −
p−1∑
i=1

∏
j≠i

j, f ′′(0) = ap−3,

then consider Taylor Series of f(p),

f(p) = f(0) +

∞∑
i=0

f (i)(0)

i!
pi ⇔ 0 =

∞∑
i=1

f (i)(0)

i!
pi−1 = f ′(0) +

f ′′(0)

2
p+

∞∑
i=3

f (i)(0)

i!
pi−1.

Since p | ap−3 = f ′′(0), then p2 | f ′′(0)
2 p which means

p2 | f ′(0) ⇔ p2 | (p− 1)!

p−1∑
i=1

∏
j ̸=i

j =

p−1∑
i=1

1

i
≡ 0 (mod p2).
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□

Proof of Form 1
Directly obtain from Method 1 of proof of Form 2.

□

Lemma 46

Statement:

Let n = akak−1...a0. For 1 ≤ i ≤ k, denoted

S(n) =
∑
i

ai, S0 =
∑
2|i

ai and S1 =
∑
2∤i

ai,

then
(a) S(n) ≡ n (mod 9).
(b) S0 − S1 ≡ n (mod 11).

Proof:
(a)

n ≡
k∑

i=0

ai10
i ≡

k∑
i=0

ai = S(n) (mod 9).

(b)

n ≡
k∑

i=0

ai10
i ≡

k∑
i=0

ai(−1)i = S0 − S1 (mod 11).

■
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3.3 GCD and LCM
Theorem 83 Properties of GCD

Statement:

GCD has the following properties:

1. (commutativity) gcd(a, b) = gcd(b, a).

2. (associativity) gcd(a1, a2, ..., an) = gcd(gcd(a1, a2, ..., ak), ak+1, ..., an) for some 1 ≤ k ≤ n.

3. (multiplicity) For coprime a, b, gcd(ab, c) = gcd(a, c)gcd(b, c).

4. (distributivity over lcm) gcd(a, lcm(b, c)) = lcm(gcd(a, b), gcd(a, c)).

5. n | a, b⇔ n | gcd(a, b).

6. gcd(nai)1≤i≤n = |n| gcd(ai)1≤i≤n.

7. gcd(a, n) = gcd(b, n) = 1 ⇔ gcd(ab, n) = 1

8. gcd(a, b) = 1 ⇔ gcd(an, bn) = 1.

9. gcd(a, b) = d⇒ gcd
(a
d
,
b

d

)
= 1.

10. If ab = nk with gcd(a, b) = 1, then a = gcd(a, n)k, b = gcd(b, n)k.

11. gcd(an, bn) = gcd(a, b)n.

Proof: Property 1,5 is by definition. For 2,3,6,7,8,9,10 and 11, think gcd(ai) as the intersection of
the prime divisor of ai then can easily proved. For 4, let p be any prime divisor of a, b or c, and let
sa, sb, sc be its exponent in each of those numbers. Let x = lcm(a, gcd(b, c)), then the exponent of p
in x is max{sa,min{sb, sc}} = min{max{sa, sb},max{sa, sc}}. Hence follows that lcm is distributive
over gcd.

■

Lemma 47

Statement:

For a, b,m, n ≥ 0, if gcd(a, b) = 1, then

gcd(am − bm, an − bn) = agcd(m,n) − bgcd(m,n)

Proof
Replacing a, b,m, n by agcd(m,n), bgcd(m,n), m

gcd(m,n) ,
n

gcd(m,n) respectively, we may assume
gcd(m,n) = 1. Since a ≡ b (mod a− b), it follows that ak ≡ bk (mod a− b) for all k ≥ 1. Hence
a− b | gcd(am − bm, an − bn). Conversely, let

d := gcd(am − bm, an − bn).

Then
am ≡ bm (mod d) and an ≡ bn (mod d),
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so for all k, l ≥ 1 amk ≡ bmk (mod d), anl ≡ bnl (mod d). Since gcd(m,n) = 1, Bézout’s lemma
yields integers k, l ≥ 1 with km = ln+ 1. Thus

aln+1 = amk ≡ bmk = bnl+1 ≡ b anl (mod d),

which gives d | anl(a− b). But gcd(a, d) = 1 (since gcd(a, b) = 1 and d | am − bm), so by Gauss’
lemma, d | a− b. This completes the proof. ■

Lemma 48

Statement:

Let for any k,
gcd(a, b) = gcd

(
a, b+ k a

)
.

Proof:
Set d := gcd(a, b). Since d | a, b, it follows that d | (b+ k a). Hence d is a common divisor of a and
b+ k a, so

d | gcd
(
a, b+ k a

)
.

Conversely, let d′ = gcd(a, b+ k a). Then d′ | a and d′ | (b+ k a), which implies d′ | b. Thus d′ is a
common divisor of a and b, giving

d′ | gcd(a, b).

Since gcd(a, b) and gcd(a, b+ k a) are nonnegative integers dividing each other, they must be equal. ■

Theorem 84 Euclidean Algorithm

Statement:

Let a > b > 0,
r0 = a, r1 = b,

and for as long as ri 6= 0, let ri+1 be the remainder when ri−1 is divided by ri. Then there
exists a smallest n ≥ 1 such that

rn = 0,

Moreover,
rn−1 = gcd(a, b).

Proof: First, by construction each remainder satisfies 0 ≤ rn+1 < rn. Since the sequence {rn}
consists of nonnegative integers strictly decreasing whenever rn > 0, it must terminate at some first
index N with rN = 0.
Next, for each n ≥ 1, the division

rn−1 = qn rn + rn+1

shows that rn+1 ≡ rn−1 (mod rn). Hence every common divisor of rn−1, rn also divides rn+1, and by
induction every common divisor of a, b divides each subsequent rn. In particular, it divides rN−1.
On the other hand, since rN = 0, we have rN−1 | rN−2, and then by “lifting back’’through the
divisions one sees rN−1 divides rN−2, rN−3, . . . , r0 = a and r1 = b. Thus rN−1 is a common divisor of
a and b. Combining these two facts, rN−1 is the greatest common divisor of a and b. ■
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Theorem 85 Properties of LCM

Statement:

LCM has the following properties:

1. (commutativity) lcm(a, b) = lcm(b, a).

2. (associativity) lcm(a1, a2, ..., an) = lcm(lcm(a1, a2, ..., ak), ak+1, ..., an) for some 1 ≤ k ≤ n.

3. (distributivity over gcd) lcm(a, gcd(b, c)) = gcd(lcm(a, b), lcm(a, c))

4. a, b | n⇔ lcm(a, b) | n.

5. lcm(na, nb) = |n|lcm(a, b).

Proof:
Property 1 is by definition. For 2,4 and 5, think lcm(ai) as the union of prime divisor of ai. For 3, let
p be any prime divisor of a, b or c, and let sa, sb, sc be its exponent in each of those numbers. Let
x = gcd(a, lcm(b, c)), then the exponent of p in x is
min{sa,max{sb, sc}} = max{min{sa, sb},min{sa, sc}}. Hence follows that gcd is distributive over
lcm.

■

Lemma 49

Statement:

For any integers a, b,
gcd(a, b) lcm(a, b) =

∣∣ab∣∣.
Proof:
Write the prime factorizations

a =
∏
p

pep , b =
∏
p

pfp ,

where the product runs over all primes p and ep, fp ≥ 0. Then

gcd(a, b) =
∏
p

pmin(ep,fp), lcm(a, b) =
∏
p

pmax(ep,fp).

Therefore

gcd(a, b) lcm(a, b) =

∣∣∣∣∣∏
p

pmin(ep,fp)+max(ep,fp)

∣∣∣∣∣ =
∣∣∣∣∣∏

p

pep+fp

∣∣∣∣∣ = ∣∣ab∣∣.
■

Theorem 86 Bézout’s Lemma

Statement:
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For any a1, a2, · · · , an that not all zero, ∃ b1, b2, · · · , bn such that
n∑

i=1

aibi = gcd(a1, a2, · · · , an).

Proof:
Let S be the set of all linear combinations of

n∑
i=1

aixi, with xi ∈ Z>0. Note a21 + · · ·+ a2n ∈ S is a

positive integer, so by the Well‐ordering principle S has a least positive element

d = min{s ∈ S : s > 0}.

Since d ∈ S, we can write
d = a1x1 + · · ·+ anxn,

showing d is a multiple of any common divisor of the ai. Now take any s ∈ S and divide by d:

s = qd+ r, 0 ≤ r < d.

Then r = s− qd ∈ S, so minimality of d forces r = 0. Hence d | s, and in particular d | ai for each i.
Therefore d = gcd(a1, . . . , an). ■

Theorem 87 Erdös-Szekeres Theorem

Statement:

For 1 ≤ k,m < n,

gcd
((

n

k

)
,

(
n

m

))
6= 1.

Proof: Suppose in contrary, noted that(
n

k

)
·
(
k

m

)
=

n!

k!(n− k)!
· k!

m!(k −m)!
=

n!

m!(n−m)!
· (n−m)!

(k −m)!(n− k)!
=

(
n

m

)
·
(
n−m

k −m

)
.

Then
(
n

m

) ∣∣∣∣∣
(
n

k

)
·
(
k

m

)
and by Gauss’ Lemma we have

(
n

m

) ∣∣∣∣∣
(
k

m

)
, which is contradict to

n > k. ■
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3.4 Diophantine Equation
Theorem 88 Fermat Last Theorem

Statement:

For n ≥ 3, the only solution over Q3 for

xn + yn = zn

is (0, 0, 0).

Proof: Andrew Wiles’s original paper:
Modular elliptic curves and Fermat’s Last Theorem ■

Theorem 89 Euler’s Four‐Square Identity

Statement:

For a, b, c, d, w, x, y, z ∈ C,(
a2 + b2 + c2 + d2

) (
w2 + x2 + y2 + z2

)
= (aw + bx+ cy + dz)2

+ (ax− bw + cz − dy)2

+ (ay − bz − cw + dx)2

+ (az + by − cx− dw)2.

Proof: One can just expand both sides to prove the identity, but here is the derivation using
quaternions (only applicable for a, b, c, d, w, x, y, z ∈ R):
Consider p, q ∈ H s.t

p = a+ bi+ cj + dk, and q = w + xi+ yj + zk,

where
i2 = j2 = k2 = −1, ij = k, ji = −k, jk = i, kj = −i, ki = j, ik = −j,

we expand and simplify:

pq = (a+ b i+ c j + dk)(w + x i+ y j + z k)

= aw + ax i+ ay j + az k + bw i+ bx i2 + by ij + bz ik

+ cw j + cx ji+ cy j2 + cz jk + dw k + dxki+ dy kj + dz k2

= (aw − bx− cy − dz) + (ax+ bw + cz − dy) i+ (ay − bz + cw + dx) j + (az + by − cx+ dw)k.

Hence,

|pq| =
√
(aw − bx− cy − dz)2 + (ax+ bw + cz − dy)2 + (ay − bz + cw + dx)2 + (az + by − cx+ dw)2.

Since |pq| = |p| |q|, square both sides and adjust the sign of each term, we will obtain the identity. ■

https://jontallen.ece.illinois.edu/uploads/537.F18/Papers/Public/Wiles-Fermat.95.pdf
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Theorem 90 Brahmagupta–Fibonacci Identity

Statement:

For a, b, c, d ∈ C,
(a2 + b2) (c2 + d2) = (ac− bd)2 + (ad+ bc)2.

Proof:
For a, b, c, d ∈ R, consider complex numbers.

z = a+ b i, w = c+ d i,

then
Norm(zw) = Norm((ac− bd) + (ad+ bc)i) = (ac− bd)2 + (ad+ bc)2,

and
Norm(z) = a2 + b2, Norm(w) = c2 + d2.

By the multiplicity of the complex norm, we have

(ac− bd)2 + (ad+ bc)2 = (a2 + b2) (c2 + d2),

as claimed. (Just expand both side to easily prove the case where a, b, c, d ∈ C.) ■

Theorem 91 Sophie Germain’s Identity

Statement:

For a, b ∈ C,
a4 + 4b4 = (a2 + 2ab+ 2b2) (a2 − 2ab+ 2b2).

Proof:
Observe that

a4 + 4b4 = a4 + 4a2b2 + 4b4 − 4a2b2 = (a2 + 2b2)2 − (2ab)2.

By the difference of squares,

(a2 + 2b2)2 − (2ab)2 =
(
a2 + 2b2 − 2ab

) (
a2 + 2b2 + 2ab

)
,

which is exactly the stated factorization. ■

Theorem 92 Candido’s Identity

Statement:

Let x, y ∈ C, then (
x2 + y2 + (x+ y)2

)2
= 2

(
x4 + y4 + (x+ y)4

)
.

Proof: Omitted. ■

Theorem 93 Simon’s Favorite Factoring Trick
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Statement:

For any x, y ∈ R and constants k, l ∈ R, the Diophantine equation

xy + kx+ ly = n

is equivalent to
(x+ l)(k + a) = n+ kl.

Furthermore, if xy has a coefficient:

sxy + kx+ ly = n

Multiply both side by s and the equation can be write as

(sx+ l)(sy + k) = sn+ kl.

Proof: Just expand. ■
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3.5 Arithmetic Function
Definition 59 Euler’s Totient Function

Description:

Euler’s Totient Function counts the integers between 1 to n that are that coprime to n
(inclusive):

φ(n) :=
∑

1≤i≤n
gcd(i,n)=1

1.

Let n =
∏k

i=1 pi
αi , we have formula of φ(n):

φ(n) = n

k∏
i=1

(
1− 1

pi

)
,

and specifically let p be prime then
φ(pk) = pk − pk−1.

Definition 60 Divisor Function

Description:

For z ∈ C, the Division Function is defined as

σz(n) :=
∑
d|n

dz,

specifically we have
σ0(n) := τ(n) =

∑
d|n

1,

is the number of divisor function and

σ1(n) := σ(n) =
∑
d|n

d,

is the sum of divisor function, when n =
∏k

i=1 pi
αi , we have formula

σz≠0(n) =

k∏
i=1

pi
z(αi+1) + 1

piz − 1
,

and

τ(n) =

k∏
i=

(αi + 1).

Definition 61 Prime Omega Functions

Description:
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Prime Omega Functions ω(n) and Ω(n) counts the number of distinct prime divisor and the
total number of prime divisor of n respectively, again if n =

∏k
i=1 pi

αi , then

ω(n) = k, Ω(n) =

n∑
i=1

αi.

Definition 62 Liouville Function

Description:

Liouville Function gives a value of +1 if n is the product of an even number of primes, and
gives −1 if otherwise:

λ(n) = (−1)Ω(n).

Definition 63 Möbius Function

Description:

Called a number square-free if it doesn’t divisible by any perfect square greater than 1, then
we can defined Möbius Function:

µ(n) :=


1 , n = 1;

(−1)ω(n) , n square-free;
0 , n isn’t square-free.

or more neatly,
µ(n) := λ(n)δω(n),Ω(n),

we also can immediately deduce that

µ(n)2 = I(n is square-free).

Definition 64 Von Mangoldt Function

Description:

The Von Mangoldt Function is defined as

Λ(n) =

{
log p , ∃ prime p and k ≥ 1 s.t n = pk

0 , otherwise.
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3.6 Multiplicative Number Theory
Definition 65 Indicator Function

Description:

For a statement P ,

I(P ) =

{
1 , P is true;
0 , otherwise.

Definition 66 Constant One Function

Description:

It is defined for convenience
1(n) :≡ 1, ∀n ∈ C.

Definition 67 Identity Function

Description:

It just simply defined as
id(n) := n, ∀n ∈ C.

Definition 68 Kronecker Delta Function

Description:

A two variables function, is defined by

δi,j := I(i = j),

In order to make the Dirichlet Convolution part more convenient later, we denote δ1,n = δ(n).

Definition 69 Multiplicative Function

Description:

A Multiplcative Function is an arithmetic function that satisfy

f(mn) = f(m)f(n), ∀ a, b s.t gcd(a, b) = 1,

below are some examples: For ∀ coprime m,n,
Greatest Common Divisor, gcd(mn, k) =gcd(m, k)gcd(n, k) if fix k,
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Euler Totient Function, φ(mn) = φ(m)φ(n),
Möbius Function, µ(mn) = µ(m)µ(n),
Divisor Function, σk(mn) = σk(m)σk(n).

Definition 70 Completely Multiplicative Function

Description:

A function is called completely multiplicative iff

f(mn) = f(m)f(n), ∀ n,m ∈ domf,

below are some examples:
Kronecker Delta Function, δmn,k = δm,kδn,k,
Constant One Function, 1(mn) = 1(m)1(n),
Identity Function, id(mn)=id(m)id(n),
Jacobi’s Symbol (and hence Legendre’s Symbol) (abn ) = ( an )(

b
n ) = ( abp1

)α1 · · · ( abpk
)αk

(multiplicative in two ways),
Expected Value, E[XY ] = E[X]E[Y ]),
Determinant, det(AB) =detA·detB,
Power Function, (mn)k = mk · nk,
Sign Function, sgn(mn) =sgn(m)·sgn(n),
Norm, Norm(wz) =Norm(w)Norm(m),
Complex Conjugate, wx = wz̄,
Liouville Function, Λ(mn) = Λ(m)Λ(n).

Definition 71 Dirichlet Convolution

Description:

For two arithmetic function f, g, the Dirichlet Convolution of them is defined by

(f ∗ g)(n) =
∑
d|n

f(d)g(
n

d
).

There are some properties of ∗:
1. (Commutativity) f ∗ g = g ∗ f ,
2. (Associativity) (f ∗ g) ∗ h = f ∗ (g ∗ h),
3. (Identity) f ∗ δ = f ,
4. (Distributivity over addition) f ∗ (g ∗ h) = f ∗ g + f ∗ h.
5. Dirichlet Convolution of two multiplicative function is also multiplicative.

Theorem 94 Möbius Inversion

Statement:
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Let f, g be two arithmetic function, then for ∀n ∈ Z>0,
Form 1:

g = f ∗ 1 ⇔ f = g ∗ µ.

we also have the product version,
Form 2:

f(n) =
∏
d|n

g(d) ⇔ g(n) =
∏
d|n

f(d)µ(
n
d ).

Proof:
Proof of Form 1
Suppose g = f ∗ 1. Convolving both sides with µ gives

g ∗ µ = (f ∗ 1) ∗ µ = f ∗ (1 ∗ µ) = f ∗ δ = f.

Conversely, if f = g ∗ µ, convolving with 1 yields

f ∗ 1 = (g ∗ µ) ∗ 1 = g ∗ (µ ∗ 1) = g ∗ δ = g,

so g = f ∗ 1.

Proof of Form 2
Assume f(n) =

∏
d|n

g(d). Taking natural logarithms gives the additive relation

ln f(n) =
∑
d|n

ln g(d).

By the additive Möbius inversion just proved,

ln g(n) =
∑
d|n

µ
(n
d

)
ln f(d).

Exponentiating both sides yields

g(n) = exp
(∑

d|n

µ(n/d) ln f(d)
)
=
∏
d|n

f(d)µ(
n
d ).

The converse follows by the same argument applied to the inverse relation. ■

Definition 72 Möbius Pair

Description:

If f and g are two arithmetic function satisfying condition f = g ∗ 1, then we call the order
pair (f, g) a Möbius Pair, here are some examples: (δ, µ), (τ,1), (σ, id), (1, δ) and (id, φ).

Definition 73 Popovici Function

Description
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A generalized Möbius Function to be the k-fold Dirichlet Convolution of itself:

µk = µ ∗ µ ∗ · · · ∗ µ.

It has a nice property, which is
µk(p

α) = (−1)α
(
k

α

)
,

for prime p and α ≥ 0.

Lemma 50

Statement:

For n > 0, ∑
i≥1

φ(i)

⌊
n

i

⌋
=

1

2
n(n+ 1).

Proof :

∑
i≥1

φ(i)

⌊
n

i

⌋
=
∑
i≥1

φ(i)
∑
m≤n
i|m

1 =
∑
i≥1

∑
m≤n
i i|m

φ(i) =
∑
m≤n
1≤i|m

φ(i) =

n∑
m=1

∑
1≤i|m

φ(i) =

n∑
m=1

m.

■
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3.7 Primes
Theorem 95 Euclid’s Theorem

Statement:

There exists infinitely many primes.

Proof: Suppose, to the contrary, that there are only finitely many primes, say p1, p2, . . . , pk.
Consider the integer

N = p1p2 · · · pk + 1.

Since N > 1, it must have at least one prime divisor p. But p cannot be any of p1, . . . , pk, for each of
those divides p1 · · · pk and hence leaves remainder 1 when dividing N . This contradiction shows there
is no finite list of all primes. ■

Theorem 96 Fundamental Theorem of Arithmetic

Statement:

Every n > 1 can be represented in exactly one way as a product of prime powers

n =

k∏
i=1

pi
αi ,

where p1 < p2 < · · · < pk are primes and αi = vpi
(n).

Proof:
Existence:
We prove by strong induction on n ≥ 2 that n is a product of primes. Clearly 2 is prime. Assume
every integer 2 ≤ k < n factors as a product of primes. If n itself is prime, we are done. Otherwise
write n = ab with integers 1 < a ≤ b < n. By the induction hypothesis both a and b factor into
primes, say

a = p1p2 · · · pj , b = q1q2 · · · qk.

Hence n = ab = p1p2 · · · pj q1q2 · · · qk is a product of primes.

Uniqueness:
Suppose, to the contrary, there is an integer n > 1 admitting two distinct prime factorizations:

n = p1p2 · · · pj = q1q2 · · · qk,

with all pi, qi prime and the two multisets {pi} 6= {qi}. Choose n minimal with this property. Then
p1 divides q1q2 · · · qk, so by Euclid’s lemma p1 divides some qi. Since p1 and qi are prime, p1 = qi.
Canceling this common factor from both sides yields a smaller integer
n/p1 = p2 · · · pj = q1 · · · qi−1qi+1 · · · qk with two distinct prime factorizations, contradicting the
minimality of n. Thus the prime factorization must be unique. ■
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Theorem 97 Dirichlet’s Theorem

Statement:

Given any coprime a, b, there exists infinitely many ak + b type primes.

Proof: See Wang Zi Jian’s proof:
https://math.uchicago.edu/~may/REU2017/REUPapers/WangZijian.pdf. ■

Theorem 98 Green-Tao Theorem

Statement:

For n ≥ 3, ∃ an arithmetic progression with n terms, and all of them are primes.

Proof: Check out https://math.mit.edu/~fox/paper-green-tao.pdf. ■

Theorem 99 Schur’s Theorem

Statement:

Let S be the set of all values of the non-constant polynomial P ∈ Z[x], then there exists
infinitely many primes divide some element of S.

Proof: If P (0) = 0 we are done, otherwise let S = {P (n) 6= 0 : n ∈ Z}. We shall show there are
infinitely many primes dividing some element of S. Set

g(x) =
P
(
xP (0)

)
P (0)

.

Since P ∈ Z[x] and P (0) 6= 0, we see g ∈ Z[x] and g(0) = 1. Now for any positive integer n, consider

g
(
n!
)

=
P
(
n!P (0)

)
P (0)

.

Because gcd
(
n!, g(n!)

)
= 1, each prime factor of g(n!) is strictly larger than n. As n→ ∞, this

produces infinitely many distinct primes dividing various values g(n!), and therefore also dividing the
corresponding values P

(
n!P (0)

)
∈ S.

In either case, S must be divisible by infinitely many primes. ■ ■

https://math.uchicago.edu/~may/REU2017/REUPapers/WangZijian.pdf
https://math.mit.edu/~fox/paper-green-tao.pdf
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Theorem 100 Kobayashi’s Theorem

Statement:

Let M be an infinite set of positive integers such that the set of prime divisors of the element
in M is finite, then the set of primes dividing the element of M + a is infinite, for ∀a ≥ 0.

Proof: Suppose

an =

m∏
i=1

pxi
i , an + t =

l∏
i=1

qyi

i ,

with {pi} and {qi} finite sets of primes. It suffices to show there are only finitely many integer
solutions (x1, . . . , xm, y1, . . . , yl).
For k = 0, 1, 2 let

Rk = { 1 ≤ i ≤ m : xi ≡ k (mod 3)}.

Then we may factor
m∏
i=1

pxi
i =

(∏
i∈R1

pi

)(∏
i∈R2

p2i

)
·
(∏
i∈R0

p
xi/3
i

)(∏
i∈R1

p
(xi−1)/3
i

)(∏
i∈R2

p
(xi−2)/3
i

)
.

Set
A =

∏
i∈R1

pi ·
∏
i∈R2

p2i , X =
∏
i∈R0

p
xi/3
i

∏
i∈R1

p
(xi−1)/3
i

∏
i∈R2

p
(xi−2)/3
i .

Then
m∏
i=1

pxi
i = AX3.

Similarly, defining residue‐classes Sk = { 1 ≤ i ≤ l : yi ≡ k (mod 3)}, one finds
l∏

i=1

qyi

i = B Y 3 for

uniquely determined integers B, Y .
Hence the original equation

l∏
i=1

qyi

i −
m∏
i=1

pxi
i = t

becomes
B Y 3 − AX3 = t.

By Thue’s theorem each choice of nonzero (A,B, t) admits only finitely many integer solutions
(X,Y ). Since (x1, . . . , xm, y1, . . . , yl) is uniquely recovered from (A,X,B, Y ), there are only finitely
many such exponent‐tuples. ■

Lemma 51

Statement:

For n > 0, there ∃ a set P which has n elements and all of them are primes such that for
∀p, q ∈ P, p+q

2 also a prime.

Lemma 52
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Statement:

Let P = {p | p < n, p is prime}, if there’s an arithmetic progression that has n ≥ 3 term and
all of them are primes, then the common difference,

d = k
∏
p∈P

p

for some k.
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3.8 Quadratic Residue
Definition 74 nth Power Residue mod m

Description:

Let m > 1, n ≥ 1. An integer a is called a nth power residue mod m if there exists an
integer x such that

xn ≡ a (mod m).

If no such x exists, then a is called a nth power non-residue mod m.
Specifically, when n = 2, we say a is a quadratic residue mod m (also called QR mod m).

Theorem 101 Euler’s Criterion

Statement:

Let m > 1 and n ≥ 1 be integers, then a is an nth power residue mod m if and only if

a
φ(m)

gcd(n,φ(m)) ≡ 1 (mod m).

Proof:
Let G = (Z/mZ)×, then |G| = φ(m). The set of all nth powers in G is the subgroup

H = { gn : g ∈ G},

whose index in G equals |G|
|H|

= gcd(n, φ(m)) = d. Hence H consists exactly of those elements of G
whose dth power is the identity. Concretely,

g ∈ H ⇐⇒ gd = 1G ⇐⇒ gφ(m)/d ≡ 1 (mod m).

Taking g = a gives the desired criterion. ■

Definition 75 Legendre Symbol

Description:

Let p be an odd prime and a ∈ Z. The Legendre symbol
(
a

p

)
is defined by

(
a

p

)
=


0, p | a,

1, p - a, a is a quadratic residue mod p,

−1, a is a quadratic nonresidue mod p.

Definition 76 Jacobi Symbol
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Description:

Let n > 1 be an odd positive integer with prime factorization n =

k∏
i=1

peii . For a ∈ Z, the

Jacobi symbol
(a
n

)
is defined by

(a
n

)
=

k∏
i=1

(
a

pi

)ei

,

where each
(

a
pi

)
is the Legendre symbol. In particular,

(
a
n

)
= 0 if and only if gcd(a, n) > 1.

Theorem 102 Lagrange’s Lemma

Statement:

Let p be an odd prime. Then

(−1

p

)
=

{
1, p ≡ 1 (mod 4),

−1, p ≡ 3 (mod 4).

Proof:
By Euler’s Criterion, (−1

p

)
≡ (−1)

p−1
2 (mod p).

If p = 4k + 1, then p−1
2 = 2k is even, so

(−1)
p−1
2 = (−1)2k = 1.

If p = 4k + 3, then p−1
2 = 2k + 1 is odd, so

(−1)
p−1
2 = (−1)2k+1 = −1.

This completes the proof. ■

Theorem 103 Gauss’s Lemma

Statement:

Let p be an odd prime and suppose p - a. Consider the least positive residues of

a, 2a, 3a, . . . , p−1
2 a (mod p),

and let n count the number of these residues that are greater than p
2 , then(a

p

)
= (−1)n.

Proof:
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Write
r1, r2, . . . , rn (for those > p/2), s1, s2, . . . , sm (for those ≤ p/2).

Then n+m = (p− 1)/2. Observe that the numbers { p− r1, . . . , p− rn} ∪ { s1, . . . , sm} form a
permutation of {1, 2, . . . , (p− 1)/2}. Hence(p− 1

2

)
! =

n∏
i=1

(p− ri)

m∏
j=1

sj ≡ (−1)n
( n∏
i=1

ri

) ( m∏
j=1

sj

)
(mod p).

On the other hand, by definition each ri or sj is congruent to ka for some 1 ≤ k ≤ (p− 1)/2, so
n∏

i=1

ri

m∏
j=1

sj ≡
(
1 · 2 · · · p− 1

2

)
a

p−1
2 =

(p− 1

2

)
! a

p−1
2 (mod p).

Combining these two displays gives(p− 1

2

)
! ≡ (−1)n

(p− 1

2

)
! a

p−1
2 (mod p).

Since gcd
(
(p− 1)/2)!, p

)
= 1, we may cancel

(
(p− 1)/2)! to obtain

(−1)n a
p−1
2 ≡ 1 (mod p).

By Euler’s Criterion, (a
p

)
= (−1)n,

as claimed. ■

Lemma 53

Statement:

Let p be an odd prime. Then (
2
p

)
= (−1)

p2−1
8 .

Proof:
By Gauss’s lemma, for any integer a with gcd(a, p) = 1,

(
a
p

)
= (−1)n, where n is the number of

least positive residues of {a, 2a, . . . , p−1
2 a} exceeding p/2. Take a = 2; then the set of even residues

F = {2, 4, 6, . . . , p− 1}

has size p−1
2 . One checks:

n = #{x ∈ F : x > p/2} =

{
p−1
4 , p ≡ ±1 (mod 8),

p+1
4 , p ≡ ±3 (mod 8).

Hence (
2
p

)
= (−1)n =

{
(−1)

p−1
4 = 1, p ≡ ±1 (mod 8),

(−1)
p+1
4 = −1, p ≡ ±3 (mod 8).

Noting that

p2 − 1

8
=

{
(8k±1)2−1

8 = 8k2 ± 2k ≡ 0 (mod 2), p ≡ ±1 (mod 8),
(8k±3)2−1

8 = 8k2 ± 6k + 1 ≡ 1 (mod 2), p ≡ ±3 (mod 8),
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we conclude (
2
p

)
= (−1)

p2−1
8 .

■

Theorem 104 Eisenstein’s Lemma
Statement:

Let p and q be odd primes. Then

(
q
p

)
= (−1)

∑ p−1
2

k=1

⌊
kq
p

⌋
.

Proof:
As in the proof of Gauss’s lemma, consider the least positive residues modulo p of

q, 2q, 3q, . . . ,
p− 1

2
q.

Write those residues exceeding p/2 as r1, r2, . . . , rn and those ≤ p/2 as s1, s2, . . . , sm. Clearly

n+m =
p− 1

2
.

By the Euclid’s Division Lemma, for each 1 ≤ k ≤ p−1
2 there is an integer bkq/pc and a least

residue rk such that
kq = p

⌊kq
p

⌋
+ rk, 0 < rk ≤ p− 1.

Summing this identity over k = 1, 2, . . . , p−1
2 yields

p−1
2∑

k=1

kq = p

p−1
2∑

k=1

⌊kq
p

⌋
+

n∑
j=1

rj +

m∑
j=1

sj .

On the other hand, if we replace each rj by p− rj (which runs over the same set of “large”
residues), we get the same total

∑
kq. Hence

p−1
2∑

k=1

kq = p

p−1
2∑

k=1

⌊kq
p

⌋
+

n∑
j=1

(p− rj) +

m∑
j=1

sj .

Now {p− rj} ∪ {sj} is a permutation of 1, 2, . . . , p−1
2 . Thus

n∑
j=1

(p− rj) +

m∑
j=1

sj = 1 + 2 + · · ·+ p− 1

2
=

p−1
2

(
p−1
2 + 1

)
2

=
p2 − 1

8
.

Subtracting (2.2) from (2.4) gives

p2 − 1

8
−
( n∑
j=1

rj +

m∑
j=1

sj

)
=

n∑
j=1

(p− rj)−
n∑

j=1

rj = np− 2

n∑
j=1

rj .

But from (2.2) we also have
∑n

j=1 rj +
∑m

j=1 sj =
∑ p−1

2

k=1 kq − p
∑ p−1

2

k=1bkq/pc. Combining and
simplifying shows that

(q − 1)
p2 − 1

8
= p
( p−1

2∑
k=1

⌊
kq
p

⌋
− n

)
+ 2

n∑
j=1

rj .
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Since p and q are odd primes, the left side and 2
∑
rj are even, hence

∑ p−1
2

k=1bkq/pc − n is even.
Therefore

(−1)
∑ p−1

2
k=1 ⌊kq/p⌋−n = 1,

and so
(−1)

∑ p−1
2

k=1 ⌊kq/p⌋ = (−1)n.

Finally, by Gauss’s lemma
(
q
p

)
= (−1)n. Comparing with (2.5) completes the proof:

(
q
p

)
= (−1)

∑ p−1
2

k=1

⌊
kq
p

⌋
.

■

Theorem 105 Quadratic Reciprocity Law

Statement:

Let p and q be distinct odd primes. Then their Legendre symbols satisfy(
p

q

) (
q

p

)
= (−1)

p−1
2

q−1
2 .

Proof: (by Rousseau)
By Chinese remainder theorem there is an isomorphism of groups

G = (Z/pqZ)× ∼= (Z/pZ)× × (Z/qZ)×.

We identify an element of G with a pair (a, b), where a ∈ {1, 2, . . . , p−1} and b ∈ {1, 2, . . . , q−1}. Let

H = {(1, 1), (−1,−1)}

and form the quotient G/H and take their product Π. We choose as representatives of G/H first all
of (Z/pZ)× times the first half of (Z/qZ)×, namely

{(a, b) : 1 ≤ a ≤ p− 1, 1 ≤ b ≤ q − 1

2
}.

Since each a–value appears q−1
2 times, their product modulo p is

(p− 1)!
q−1
2 ≡ (−1)

q−1
2 (mod p) (by Wilson’s theorem).

Each b ∈ {1, . . . , q−1
2 } is repeated p− 1 times, so the b–component of the product is((q − 1

2

)
!
)p−1

≡ (−1)
p−1
2

q−1
2 (mod q).

Hence the product of these representatives is

Π ≡
(
(−1)

q−1
2 mod p, (−1)

p−1
2

q−1
2 mod q

)
.

On the other hand, choose representatives by taking the first half of (Z/pqZ)×: all integers
1 ≤ n ≤ pq−1

2 not divisible by p or q. Let

A = {n : 1 ≤ n ≤ pq−1
2 , p - n, q - n},
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and let
B = {q, 2q, . . . , p−1

2 q} ⊂ A

be those divisible by q. Then the a–component of the product of A \B is∏
n∈A, q∤n

n ≡ (−1)
q−1
2

(
q
p

)
(mod p) (by Euler’s criterion).

Similarly the b–component is
(−1)

p−1
2

(
p
q

)
(mod q).

Thus this choice of representatives multiplies to

π ≡
(
(−1)

q−1
2 ( qp ) mod p, (−1)

p−1
2 (pq ) mod q

)
.

Since π is determined only up to a sign ±1, so

±
(
(−1)

q−1
2 , (−1)

p−1
2

q−1
2

)
=
(
(−1)

q−1
2 ( qp ), (−1)

p−1
2 (pq )

)
.

Analyzing the two cases (+) and (−) shows in either event(
q
p

)(
p
q

)
= (−1)

p−1
2

q−1
2 .

■
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3.9 Integer Coefficient Polynomial
Definition 77 Primitive Polynomial
Description:

A nonzero polynomial

f(x) =

n∑
i=0

ai x
i ∈ Z[x]

is called primitive if the greatest common divisor of its coefficients is 1, i.e.

gcd(a0, a1, . . . , an) = 1.

Theorem 106 Gauss’s Lemma in Polynomial
Statement:

If f(x), g(x) ∈ Z[x] are primitive, then their product f(x) g(x) is also primitive.

Proof:
Write

f(x) =

n∑
i=0

aix
i, g(x) =

m∑
j=0

bjx
j ,

with gcd(ai)0≤i≤n = gcd(bi)0≤i≤n = 1. Suppose a prime p divides every coefficient of f(x)g(x). Then
in the product

f(x)g(x) =

n+m∑
k=0

ckx
k, ck =

∑
i+j=k

aibj ,

each sum
∑

i+j=k

aibj is divisible by p. In particular, by Eucid’s Lemma

c0 = a0b0 ≡ 0 (mod p) =⇒ p | a0 or p | b0.

WLOG assume p | a0. Let r be the smallest index with p - ar. Then looking at

cr = arb0 + ar−1b1 + · · ·+ a0br,

all terms except arb0 are divisible by p, yet cr ≡ 0 (mod p). Hence p | b0. Repeating the same
argument on increasing indices shows p | bi for all i. This contradicts gcd(bi)0≤i≤n = 1. Thus no
prime divides all coefficients of fg, so fg is primitive. ■

Definition 78 Irreducible Polynomial
Description:

Let F be a field and let f(x) ∈ F[x] be nonconstant. We say f(x) is irreducible over F if
whenever

f(x) = g(x)h(x) with g(x), h(x) ∈ F[x],

then one of the factors is a nonzero constant.
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Theorem 107 Gauss’s Irreducibility Lemma
Statement:

A nonconstant polynomial f(x) ∈ Z[x] is irreducible in Q[x] if and only if it is both primitive
and irreducible in Z[x].

Proof:
“⇒”is trivial.

Conversely, assume f is primitive and irreducible in Z[x], but factors in Q[x] as

f(x) = G(x)H(x), G,H ∈ Q[x], degG, degH > 0.

Choose minimal positive integers c1, c2 such that c1G, c2H ∈ Z[x]. Then

c1c2 f(x) =
(
c1G(x)

) (
c2H(x)

)
is a product of primitive polynomials, so by Form 1 both c1G and c2H are primitive. Since f itself is
primitive, c1c2 must be ±1, forcing G,H ∈ Z[x]. This contradicts irreducibility of f in Z[x]. ■

Theorem 108 Eisenstein’s Criterion
Statement:

Let
P (x) =

n∑
i=0

aix
i ∈ Z[x], an 6= 0.

If there exists a prime p such that

1. p - an,

2. p | ai for all 0 ≤ i ≤ n− 1,

3. p2 - a0,

then P (x) is irreducible in Q[x].

Proof: First we show that P (x) is irreducible in Z[x]. Suppose, to the contrary, that

P (x) =

( m∑
i=0

bi x
i

)( ℓ∑
j=0

cj x
j

)
, m, ℓ ≥ 1,

with bi, cj ∈ Z.
Since p - an = bm cℓ, neither bm nor cℓ is divisible by p. On the other hand p | a0 = b0 c0 but p2 - a0,
so exactly one of b0, c0 is a multiple of p. WLOG assume p | b0 and p - c0.
Let t be the smallest index with 1 ≤ t ≤ m such that p - bt. Then p | bi for all 0 ≤ i < t. Compare
coefficients of xt:

at =
∑

i+j=t

bi cj = bt c0 +

t−1∑
i=0

bi ct−i.

All terms in the second sum are divisible by p, and since t < n we have p | at. Hence p | bt c0. But
p - bt and p - c0, a contradiction.
Therefore no nontrivial factorization is possible, and P (x) is irreducible in Z[x].
Moreover, if cont(P ) > 1, let P (x) := cont(P ) · P1(x), then by Gauss’ Irreducibility Lemma, Pi

irreducible over Q implies P also irreducible over Q. ■
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Theorem 109 Cohn’s Irreducibility Criterion
Statement:

Let b ≥ 2 be an integer. Suppose the number

anan−1 · · · a0 (an 6= 0)

is a prime written in base b. Then the polynomial

P (x) = anx
n + an−1x

n−1 + · · ·+ a0

is irreducible in Z[x].

Proof: (by M. Ram Murty)
Claim 1: For any root α of P (x), we have <(α) ≤ 0 or

|α| < 1 +
√
4b− 3

2
.

Proof of Claim 1: We may assume <(α) > 0 and |α| > 1.
Since P (α) = 0, we get ∣∣∣an +

an−1

α

∣∣∣ =
∣∣∣∣∣∣

n∑
j=2

an−j

αj

∣∣∣∣∣∣ .
Note that

<
(
1

α

)
=

<(α)
|α|2

> 0

and an ≥ 1, so ∣∣∣an +
an−1

α

∣∣∣ ≥ <
(
an +

an−1

α

)
≥ 1.

By Triangle Inequality,∣∣∣∣∣∣
n∑

j=2

an−j

αj

∣∣∣∣∣∣ ≤
n∑

j=2

|an−j |
|α|j

≤ (b− 1)

n∑
j=2

1

|α|j
<

b− 1

|α|2 − |α|
.

Hence
1 <

b− 1

|α|2 − |α|
,

so
|α| < 1 +

√
4b− 3

2
.

□
Claim 2: When b = 2, for any root α of P (x), we have

<(α) < 3

2
.

Proof of Claim 2: Again we assume <(α) > 0 and |α| > 1. When n = 1, 2, it is easy to verify that
x, x+ 1, x2, x2 + 1, x2 + x, x2 + x+ 1 all satisfy the requirement.
When n ≥ 3, we use P (α) = 0 to get

∣∣∣an +
an−1

α
+
an−2

α2

∣∣∣ =
∣∣∣∣∣∣

n∑
j=3

an−j

αj

∣∣∣∣∣∣ .
If | argα| ≤ π

4 , then

<
(

1

α2

)
≥ 0, and an ≥ 1,
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so ∣∣∣an +
an−1

α
+
an−2

α2

∣∣∣ ≥ <
(
an +

an−1

α
+
an−2

α2

)
≥ 1.

By Triangle Inequality, ∣∣∣∣∣∣
n∑

j=3

an−j

αj

∣∣∣∣∣∣ <
n∑

j=3

1

|α|j
<

1

|α|3 − |α|2
.

So
1 <

1

|α|3 − |α|2
, i.e., |α|3 − |α|2 − 1 < 0, ⇒ <(α) ≤ |α| < 3

2
.

Now if | argα| > π
4 , then by Lemma 1:

|α| < 1 +
√
5

2
, so <(α) < |α| cos π

4
<

1 +
√
5

2
√
2

<
3

2
.

□

Return to the original problem. Suppose P (x) ∈ Z[x] is reducible. Let

P (x) = f(x)g(x),

where f(x), g(x) ∈ Z[x] are nonconstant integer-coefficient polynomials. Since P (b) is a prime and
f(b), g(b) ∈ Z, we may assume:

|f(b)| = 1.

Let the roots of f(x) be α1, . . . , αm. By Lemma 1, <(αi) ≤ 0 or

|αi| <
1 +

√
4b− 3

2
, for i = 1, . . . ,m.

When b ≥ 3,

b− 1 +
√
4b− 3

2
≥ 1, ⇒ |b− αi| > 1,

so

|f(b)| =

∣∣∣∣∣
m∏
i=1

(b− αi)

∣∣∣∣∣ > 1.

Contradiction.
When b = 2, by Lemma 2:

<(αi) <
3

2
, 1 ≤ i ≤ m,

and the leading coefficient of f(x) is 1. So

|f(2)| =

∣∣∣∣∣
m∏
i=1

(2− αi)

∣∣∣∣∣ >
∣∣∣∣∣
m∏
i=1

(1− αi)

∣∣∣∣∣ = |f(1)| ≥ 1.

Contradiction. ■

Theorem 110 Perron’s Criterion

Statement:
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Let
P (x) =

n∑
i=0

aix
i ∈ Z[x]

be a monic polynomial, i.e an = 1. If

|an−1| > 1 +

n−2∑
i=0

|ai| and a0 6= 0,

then P (x) is irreducible in Z[x].

Proof:
We first show that P (x) has at most one root with modulus ≥ 1.
Assume P (x) has a root α with |α| = 1. Since P (α) = 0, by Triangle Inequality

|an−1| = |an−1α
n−1| =

∣∣∣∣∣αn +

n−2∑
i=0

aiα
i

∣∣∣∣∣ ≤ |αn|+
n−2∑
i=0

|aiαi| ≤ 1 +

n−2∑
i=0

|ai|,

contradicting the hypothesis.
Now suppose P (x) has a root α with |α| > 1. Write

P (x) = (x− α)

(
xn−1 +

n−2∑
i=0

bix
i

)
.

By comparing coefficients, we obtain

an−1 = bn−2 − α,

an−2 = bn−3 − αbn−2,

...
a1 = b0 − αb1,

a0 = −αb0.

Substitute these into the inequality:

|an−1| > 1 +
n−2∑
i=0

|ai|,

we get:

|bn−2 − α| > 1 +

n−3∑
i=0

|bi − αbi+1|+ |αb0|.

Using triangle inequality:

|bn−2|+ |α| > 1 +

n−3∑
i=0

(|α||bi+1| − |bi|) + |α||b0|.

Group terms and simplify:

|α| − 1 > (|α| − 1)

(
n−2∑
i=0

|bi|

)
,

so

1 >

n−2∑
i=0

|bi|.



152 CHAPTER 3. NUMBER THEORY

Now suppose

xn−1 +

n−2∑
i=0

bix
i

has a root β with |β| > 1. Then

|β|n−1 =

∣∣∣∣∣
n−2∑
i=0

biβ
i

∣∣∣∣∣ ≤
n−2∑
i=0

|bi||β|i ≤

(
n−2∑
i=0

|bi|

)
|β|n−1,

so

1 ≤
n−2∑
i=0

|bi|.

contradiction.
Back to the original problem.
Suppose for contradiction that P (x) is reducible in Z[x]. Let

P (x) = f(x)g(x)

where f, g are nonconstant monic polynomials with integer coefficients.
By Vieta’s Theorem, product of roots of f is positive integer, so there’s a root of f with modulus
≥ 1. Similarly g also has a root with modulus ≥ 1, and hence P has at least 2 roots with modulus
≥ 1, contradiction. ■
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3.10 Combinatorial Number Theory
Theorem 111 Erdös-Ginzburg-Ziv Theorem

Statement:

Let n > 1, we can always find n integers from arbitrary 2n−1 integers such that their arithmetic
mean is integer.

Proof: WLOG, assume
0 ≤ a1 ≤ a2 ≤ · · · ≤ a2p−1 < p.

If there exists 1 ≤ i ≤ p− 1 such that ai = ai+p−1, then

i+p−1∑
j=i

aj = p ai ≡ 0 (mod p).

If for every 1 ≤ i ≤ p− 1 we have ai 6= ai+p−1, set

Ai = {ai, ai+p−1}, 1 ≤ i ≤ p− 1, Ap = {a2p−1}.

By the Cauchy–Davenport theorem,∣∣∣∣∣
p∑

i=1

Ai

∣∣∣∣∣ ≥ min
{
p,

p∑
i=1

|Ai| − (p− 1)
}

= p.

Hence
p∑

i=1

Ai = Zp,

completing the proof. ■
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3.11 Analytic Number Theory
Definition 79 Riemann Zeta Function

Description:

The Riemann zeta function ζ(s) is defined for <(s) > 1 by

ζ(s) =

∞∑
n=1

1

ns
,

Theorem 112 Euler Product

Statement:

For <(s) > 1,
ζ(s) =

∏
p prime

1

1− p−s
.

Proof:
we set ∏

p

or
∑
p

asq a product or sum over prime p.
Every positive integer n may be written uniquely as

n =
∏

p prime
pcp ,

where each exponent cp ≥ 0 and cp = 0 for all but finitely many primes. Hence

∏
p

( ∞∑
cp=0

p−cps
)

expands formally to ∑
(cp)

∏
p

p−cps =

∞∑
n=1

n−s,

since
∏

p p
−cps = (

∏
p p

cp)−s = n−s and each n arises exactly once. Absolute convergence for
<(s) > 1 justifies this rearrangement. Finally, each factor is a geometric series:

∞∑
cp=0

p−cps =
1

1− p−s
,

so
ζ(s) =

∏
p prime

1

1− p−s
.

■
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3.12 Algebraic Number Theory
Definition 80 Algebraic Number

Description:

A complex number α is called an algebraic number (denoted as α ∈ A) if there exists a
nonzero polynomial

P (x) ∈ Z[x]

such that
P (α) = 0.

If no such polynomial exists, α is said to be transcendental.
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Chapter 4

Geometry

4.1 Argand Plane
Remark: In this section, all points use the same letter to represent the corresponding complex
number in the Argand Plane. The proof of unit circle version of each formula is not given.

Lemma 54
Statement:

In the Argand Plane, if z ∈ C lies on circumference of the unit circle, then

z =
1

z
.

Proof:
Since |z| = 1, we have zz = |z|2 = 1. Rearranging gives

z =
1

z
.

■

Theorem 113 Parallelity Criterion in Argand Plane

Statement:

For A,B,C,D ∈ C, AB ‖ CD if and only if

A−B

C −D
∈ R.

unit circle form: If A,B,C,D lie on circumference of unit circle,

AB = CD.

Proof:

AB ‖ CD ⇔ arg(A−B) = arg(C −D) ⇔ arg
(
A−B

C −D

)
= 0 ⇔ A−B

C −D
∈ R.

■

161
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Theorem 114 Perpendicularity Criterion in Argand Plane
Statement:

Form 1: For A,B,C,D ∈ C, AB ⊥ CD if and only if

A−B

C −D
∈ iR.

Form 2: For A,B,C,D ∈ C, AB ⊥ CD if and only if

(A−B)(C −D) ∈ iR.

unit circle form: If A,B,C,D lie on circumference of unit circle,

AB + CD = 0.

To prove Form 1, only need to notice that AB ⊥ CD if and only if exits some α ∈ R such that
A−B = iα(C −D). Now we can prove Form 2 by Form 1:

A−B

C −D
∈ iR ⇔ |C −D|2A−B

C −D
= (A−B)(C −D) ∈ iR.

■

Theorem 115 Collinearity Criterion in Argand Plane
Statement:

Form 1: For A,B,C ∈ C, A,B,C collinear if and only if

A−B

C −B
∈ R.

Form 2: For A,B,C ∈ C, A,B,C collinear if and only if∣∣∣∣∣∣
1 A A
1 B B
1 C C

∣∣∣∣∣∣ = 0.

Form 3: For A,B,C ∈ C, A,B,C collinear if and only if

(A−B)C − (A−B)C +AB −AB = 0.

unit circle form: If A,B lie on circumference of unit circle,

C = A+B −ABC

Proof:
Form 1 is true by Complex Parallelity Criterion, notice that

A−B

C −B
=

(
A−B

C −B

)
⇔
∣∣∣∣A−B A−B
C −B C −B

∣∣∣∣ = 0.

then we can immediately prove Form 2 by compute∣∣∣∣A−B A−B
C −B C −B

∣∣∣∣ =
∣∣∣∣∣∣
1 0 0
1 A−B A−B
1 C −B C −B

∣∣∣∣∣∣ =
∣∣∣∣∣∣
1 A A
1 B B
1 C C

∣∣∣∣∣∣ = 0.
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and after expand the determinant we get Form 3. ■

Theorem 116 Equation of Straight Line in Argand Plane

Statement:

For A,B ∈ C, the equation of straight line AB is

(A−B)z − (A−B)z = AB −AB.

Remark: Noted that AB −AB ∈ iR.

Proof: True by Complex Collinearity Criterion. ■

Theorem 117 Concurrency Criterion in Argand Plane

Statement:

For three pairwise non parallel lines l1, l2, l3, where li : aiz − aiz = bi for i = 1, 2, 3, then they
are concurrent if and only if ∣∣∣∣∣∣

a1 a1 b1
a2 a2 b2
a3 a3 b3

∣∣∣∣∣∣ = 0.

Proof:

Noticed that li concurrent if and only if the system of equation
a1z − a1z = b1,

a2z − a2z = b2,

a3z − a3z = b3.

has a solution z∗. By Cramér’s Rule, the intersection point of l1, l2

z∗ =

∣∣∣∣b1 −a1
b2 −a2

∣∣∣∣∣∣∣∣a1 −a1
a2 −a2

∣∣∣∣ =
∣∣∣∣b1 a1
b2 a2

∣∣∣∣∣∣∣∣a1 a1
a2 a2

∣∣∣∣ .
Then by Complex Collinearity Criterion, its equivalent to

b3 = a3

∣∣∣∣b1 a1
b2 a2

∣∣∣∣∣∣∣∣a1 a1
a2 a2

∣∣∣∣ − a3

∣∣∣∣−b1 a1
−b2 a2

∣∣∣∣∣∣∣∣a1 a1
a2 a2

∣∣∣∣ = a3

∣∣∣∣b1 a1
b2 a2

∣∣∣∣∣∣∣∣a1 a1
a2 a2

∣∣∣∣ − a3

∣∣∣∣b1 a1
b2 a2

∣∣∣∣∣∣∣∣a1 a1
a2 a2

∣∣∣∣
since bi ∈ iR. Multiply the denominator to both side yield

0 = a3

∣∣∣∣b1 a1
b2 a2

∣∣∣∣− a3

∣∣∣∣b1 a1
b2 a2

∣∣∣∣− b3

∣∣∣∣a1 a1
a2 a2

∣∣∣∣ =
∣∣∣∣∣∣
a1 a1 b1
a2 a2 b2
a3 a3 b3

∣∣∣∣∣∣ .
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■

Theorem 118 Complex Parallelogram

Statement:

For A,B,C,D ∈ C, ABCD is a parallelogram if and only if

A+ C = B +D.

Proof: −−→
AB =

−−→
DC ⇔ A−B = D − C. ■

Theorem 119 Complex Midpoint

Statement:

For A,B ∈ C, then C is midpoint of segment AB if and only if

C =
A+B

2
.

Proof: Let D = A+B, consider Parallelogram OADB, since midpoint of AB intercept midpoint of
OD, then midpoint of AB =

D

2
=
A+B

2
. ■

Theorem 120 Equation of Perpendicular Bisector in Argand Plane

Statement:

For A,B ∈ C, the equation of perpendicular bisector of segment AB is

(A−B)z + (A−B)z = |A|2 − |B|2.

Proof:
Let the perpendicular bisector of segment AB be l, then its normal vector will be A−B which
means the vector (A−B)i has the same direction with l. Also remember that l pass through A+B

2 ,
then by Equation of Straight Line in Argand Plane,

−i(A−B)z − i(A−B)z = −i(A−B)

(
A+B

2

)
− i(A−B)

(
A+B

2

)
⇔ (A−B)z + (A−B)z = |A|2 − |B|2.

■

Theorem 121 Complex Reflection Over a Line Formula
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Statement:

For X,X ′, A,B ∈ C, then X ′ is the reflection of X over line AB if and only if

X ′ =
(A−B)X +AB −AB

A−B
.

unit circle form: If A,B lie on circumference of unit circle,

X ′ = A+B −ABX.

Proof: Noticed that X
′ −A

A−B
=

(
X −A

A−B

)
. After arrangement give us the desired. ■

Theorem 122 Foot of Altitude in Argand Plane

Statement:

For X,F,A,B ∈ C, then F is the foot of altitude of X to line AB if and only if

F =
(A−B)X + (A−B)X +AB −AB

2(A−B)
.

unit circle form: If A,B lie on circumference of unit circle,

F =
1

2
(X +A+B −ABX).

Proof: It’s obvious by Complex midpoint and Complex Reflection Over a Line Formula
because F is the midpoint of segment XX ′. ■

Theorem 123 Intersection in Argand Plane

Statement:

For A,B,C,D, P ∈ C, P is the intersection point of line AB and line CD if and only if

P =
(AB −AB)(C −D)− (A−B)(CD − CD)

(A−B)(C −D)− (A−B)(C −D)
.

unit circle form: If A,B,C,D lie on circumference of unit circle,

P =
AB(C +D)− CD(A+B)

AB − CD
.

Proof:
Recall that the equation of the straight line through A,B ∈ C may be written in the form

(A−B) z − (A−B) z = AB −AB.
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Thus the intersection P of lines AB and CD is the unique solution z = P of the simultaneous system(A−B) z − (A−B) z = AB −AB,

(C −D) z − (C −D) z = CD − CD.

By Cramer’s rule the solution for z is

P =

∣∣∣∣AB −AB A−B
CD − CD C −D

∣∣∣∣∣∣∣∣A−B A−B
C −D C −D

∣∣∣∣ =
(AB −AB)(C −D)− (A−B)(CD − CD)

(A−B)(C −D)− (A−B)(C −D)
.

■

Theorem 124 Ice Cream Cone Formula

Statement:

For A,B,C ∈ C, if the incircle of 4ABC is the unit circle, and AC,AB tangent to it at D,E
respectively, then

A =
2DE

D + E
.

Proof: Applying unit circle form of Complex Intersection Formula by setting the lines as DD
and EE. ■

Theorem 125 Complex Shoelace Formula

Statement:
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Let A,B,C ∈ C with affixes a, b, c. The signed area [∆ABC] of triangle ABC may be written
in two equivalent forms:
Form 1:

[4ABC] = i

4

∣∣∣∣∣∣∣
1 a a

1 b b

1 c c

∣∣∣∣∣∣∣ .
Form 2:

[4ABC] = 1

2
=
(
ab+ bc+ ca

)
.

Proof:
Consider −−→

OP := x+ yi,
−−→
OQ := u+ vi, then the directed area of the parallelogram with side OP and

OQ will be xv − yu = =(PQ), so [4OPQ] =
1

2
=(PQ). Hence, we have

[4ABC] =
∑
cyc

[4OAB] =
1

2
=

(∑
cyc

ab

)
,

so we solved Form 2.
Expanding the 3× 3 determinant in Form 1 along the first column gives∣∣∣∣∣∣

1 a a

1 b b
1 c c

∣∣∣∣∣∣ = a b+ b c+ c a− a c− b a− c b.

Multiplying by i
4 and using i(z − z) = 2=(z) yields

i

4

(
a b+ b c+ c a− a c− b a− c b

)
=

1

2
=
(
ab+ bc+ ca

)
,

which is exactly Form 2. ■

Theorem 126 Complex Similar Triangles

Statement:

Let A,B,C,D,E, F ∈ C. The triangles 4ABC and 4DEF are directly similar if and only if∣∣∣∣∣∣
1 A D
1 B E
1 C F

∣∣∣∣∣∣ = 0.

Moreover, 4ABC is opposite‐similar to 4DEF (mirror image) if and only if∣∣∣∣∣∣
1 A D
1 B E
1 C F

∣∣∣∣∣∣ = 0.

Theorem 127 Complex Circumcenter
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Statement:

For A,B,C ∈ C, the circumcenter of (ABC) is

O△ABC =

∣∣∣∣∣∣
1 A |A|2
1 B |B|2
1 C |C|2

∣∣∣∣∣∣∣∣∣∣∣∣
1 A A
1 B B
1 C C

∣∣∣∣∣∣
.

Theorem 128 Complex Centroid
Statement:

For A,B,C ∈ C, the centroid of 4ABC is

G =
A+B + C

3
.

Theorem 129 Complex Incenter
Statement:

For A,B,C ∈ C, let A = a2, B = b2, C = c2, then the incenter of 4ABC is

I = −
∑
cyc

ab.

Theorem 130 Complex Center of Nine Point Circle
Statement:

For A,B,C ∈ C, if (ABC) is unit circle, then the center of nine point circle of 4ABC is

n9 =
A+B + C

2
.

Theorem 131 Concyclic Criterion in Argand Plane
Statement:

A,B,C,D ∈ C, are concyclic if and only if

A−B

C −B
· C −D

A−D
∈ R.
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Theorem 132 Complex Equilateral Triangle

Statement:

For A,B,C ∈ C, 4ABC is equilateral if and only if

A2 +B2 + C2 = AB +BC + CA.
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Chapter 5

Advance Math

5.1 Real Analysis
Theorem 133 L’Hôpital’s Rule

Statement:

Let f, g ∈ C1((a, b)) and suppose g′(x) 6= 0 for all x ∈ (a, b). Let c be a point in [a, b] (or a
finite endpoint) such that

lim
x→c

f(x) = lim
x→c

g(x) = 0 or lim
x→c

f(x) = lim
x→c

g(x) = ±∞.

If
L = lim

x→c

f ′(x)

g′(x)

exists (finite or infinite), then

lim
x→c

f(x)

g(x)
= L.

Proof:
We give the classical proof in the 0/0 case; the ∞/∞ case is analogous. For x 6= c in (a, b), since
f(c) = g(c) = 0, by Cauchy’s Mean Value Theorem there exists ξ between x and c such that

f(x)− f(c)

g(x)− g(c)
=
f ′(ξ)

g′(ξ)
.

Hence
f(x)

g(x)
=
f ′(ξ)

g′(ξ)
.

As x→ c, we have ξ → c, so by the hypothesis limx→c f
′(x)/g′(x) = L, therefore

lim
x→c

f(x)

g(x)
= lim

x→c

f ′(ξ)

g′(ξ)
= L.

■
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