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Preface

In recent years, the culture of mathematical competitions has been growing rapidly in
Malaysia. More and more secondary-school and high-school mathematics enthusiasts
are eager to test their skills on contest problems. I have had the honor of serving
as a member of the Malaysian National Training Team for the International Mathe-
matical Olympiad (BIMO). As I approach the end of my competitive career, I wish to

consolidate the mathematics I’ ve learned over these years, and thus this book was born.

This book is a compendium of theorems and results that frequently appear in mathe-
matical Olympiads. Its purpose is to present each topic clearly, eliminate information
gaps, and serve as a “mathematical dictionary.” Beginners will find concise statements
of the key ideas in each area, while seasoned competitors can review known theorems

and proofs—or discover new results.

Proofs in this book are given primarily to justify why a result is true; they are in-
tended as references rather than detailed expositions of proof strategies. This book is
aimed at all scholars: secondary-school students, undergraduates, IMO trainees, grad-

uate students, teachers, and coaches alike.

I have endeavored to collect as many elementary theorems and corollaries as possi-
ble. Personally, writing this book will motivate me to continue learning after I retire

from competition, and future editions will naturally introduce more advanced material.

Because this book is authored solely by me, I apologize in advance for any typos or in-
accuracies in the statements or proofs. Corrections and feedback are warmly welcomed;

please contact me at +60 11-5854 4151. Thank you in advance for your understanding.

Because of my own limitations, many more general forms of theorems (for example,
Minkowski’ s inequality in L” spaces) are not included here, but the material should

more than suffice for high-school-level competitions.



At present I am preparing for A-levels, so many chapters are still incomplete: the
sections on number theory, geometry, and advanced topics do not yet have their illus-
trations, and several well-known theorems (such as Lagrange’ s theorem in the theory
of orders and primitive roots, and various trigonometric identities) have not been in-
cluded. Therefore, this edition is titled “Version 0.” The first complete edition is

planned for release in February next year.

Should you wish to submit any results not yet included, please contact the author;

your contribution will broaden the mathematical horizons of many.

This book is not for profit, but provided purely for sharing.
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Chapter 1

Algebra

1.1 Inequality
Theorem 1 QM-AM-GM-HM Inequality

Statement:

For x1,x9,...,x, € Ryg,n > 1, defined

Harmonic mean : H,, = nn .
1
DB
i=1
Then Q, > A, > G, > H,. The equalities hold if and only if x1 = x5 = ... = z,,.

2-variable form:
2

2 2

2 2

=
(S

Proof:
QM-AM inequality

Method 1: (prove by vector)
Consider @ = (x1,x2,...,x,),b = (1,1, ..., 1), then

n
i=1

- |b] cos O < |a@] - |b] =

1
Multiply both side by — and we are done.
n

19



20 CHAPTER 1. ALGEBRA

Method 2: (probabilistic method)
Consider random variable X = {z1, 2z, ...,2,} , then

2
1 n
Var(X Z T; (n Z :EZ> .
i=1
The result is followed by the fact that variance is non-negative. |

AM-GM inequality

Method 1: (backward induction)
We first prove that 2" works for Vn € Zs>¢: The case n = 0 is trivial, suppose that AM-GM Inequality
is true for some 2%, then for n = 2k+1

ok+1 ok ok+1 ok+1 ok+1
. k

E xizg T + E x;>2k. 2 1_[35z :2k+1-Hxi.

i=1 i=1 i=2k41 i= i=1 i=1

Now we prove that if n = k works, then n = k£ + 1 works too: Consider x1, o, ..., Tr_1, T where we
choose zj, = k T ZZ , T; then since

is true, we substitute the value of xj, inside the inequality obtain

1 - ( 1)2 7,+E 3 1 k-1 ) k . 1 k—1 k—1
E;xi: k(liicl) 136 :k—lgxizkgxi:kngm'li[lm.

which give us

Method 2: (direct induction)
The case n = 0 is obvious, suppose that AM-GM Inequality holds true for some n = k, then for
n==k+1,

Aps1 = k[(k;+1)Ak+1+(k 1)Agi] = ;kl(k—l)

k+1

k-1
> A H T = Apy1 > Grgr.
=1

GM-HM inequality

By AM-GM Inequality,
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Theorem 2 Cauchy-Schwarz Inequality

Statement:

For ay,as,...;an,b1,b,....b, € R,

(Ee)(5)= (5)

Theequalityholdsifandonlyifai:00rbi:0for1gignor%—b for 1 <i#j<n.
i J

Proof:
Method 1: (prove by algebraic identity)
We compute

n n n 2
(Zaf) (be)—(z:azbz) = Z ainj2— Z aibiajbj:% Z ainj2+aj2bi2—2aibiajbj
i=1 i=1 i=1

1<ij<n 1<ij<n 1<ij<n

1<i,j<n
|
Method 2: (prove by vector)
Consider vector @ = (a1, asg, ..., an),b = (b1, ba, ..., b, ), then the dot product
> abi=a-b=|a| - |b|cosd <|a| - |b| = <Zai2> (Zbﬁ).
i=1 i=1 i=1
[ |

n

23

no 9

Y16 agb;
n 2

Yo aibi b

2
n n n n 2 n
= E 2 E 2] _ E P Doim1 @it D aib
o ( =1 " ) < =1 5 ) ( =1 adn) - ‘Z?_l aibi Yy b

i=1
n n 2 n n
_ a;°  ab;| L lay o a
= ZZ b b2|T ZaﬂbZ bob
i=1j=117" ¢ i=1 j=1 7
Similarly,
. ) a; aj _ ) CLj a;
S*ZZM’ b b~ ZZalb] by b
i=1 j=1 i=1 j=1
Thus,
n n n n
a; Qa;
28 =" (a;b; — aiby) b; b= 35 aghi — aiby)* = 0
i=1 j=1 i=1 j=1
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Theorem 3 Holder’s Inequality

Statement:

Form 1:
For p,q > 07a17a27 "'7a’n7b17b27 ;bn > 07

Form 2:
For ay,a9,...;an,b1,b9,....;b, > 0, if p,q > 1s.% % -+ % =1 then

()

1

(i biq> ' 2 zn:albl
1 i=1

1=

S

=% Y1<ij<n.

a —L
— D.9>
bj

P
3
biq

Equality holds when a; =0 or b; =0,V1 <i < mn, or

Proof:
One can easily check that Form 1 and Form 2 is equivalent, now we prove Form 1. Since the
inequality is homogeneous, WLOG let >°"  a; = >, b; = 1, then by AM-GM Inequality,

n

p+q/aipbiq < Z pa};%;]bl =1.

n
= =1

i=1

Remark: p=qg=11in Form 1 and p = ¢ = 2 in Form 2 is actually Cauchy-Schwarz Inequality.

Theorem 4 Titu’s Lemma

Statement:

For m > 0,a1,a9,...,a, > 0,b1,ba,....,b,, > 0,

i m+1

DI
i=1 (

Equality holds when m =0 or a; =0,V 1 <4 < or % = Z—j, V1<i##j<nform¢{-1,0}.

Proof: By Holder’s Inequality,

() (55)

Y

(&)

i=1
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Theorem 5 Schur’s Inequality

Statement:

Form 1:
For a,b,c >0, r > 0,

Zar(a —b)(a—c) >0.

@@

Form 2:
For a,b,c > 0,r > 0,

Zar(GQ + be) > Za”‘l(b—i— c).

cyc cyc

Form 3: (r=1)
For a,b,c > 0,
a® + b + ¢ + 3abe > ZaZb.

sym

Equality holds if and only if a =b=cor a =b,c = 0.

Proof: Only need to prove Form 1. WLOG let a > b > ¢, then
ZaT(a —ba—c)=(a=0b)a"(a—c)=b"(b——c)]+ " (¢c—a)(c—b) > 0.

cyc

The last step is because a > b and ¢ > 0. |

Theorem 6 Power Mean Inequality

Statement:

For ay,as,...,a, > 0,a,8 # 0, if & > 3, then

1 1
1 n N o 1 n B
= Xes > [ = B .
i=1
Equality holds if and only if a; = as = ... = a,.

Proof: Let f(z) = 27,2 >0, since a > /3, then f"(x) > 0 which means f convex.
By Jensen’s Inequality,

%if(alﬂ) > f(:liazﬂ> & %i(aiﬁ)% > <iiai5> & (;iaf‘)a > (iiazﬂ)ﬂ_

=1 i=1

Remark: If denote

i=1
then
M2)=Q,, M(1) = A,, lim0 M(a) =G, M(-1) = H,,
a—

lim M(a) = min{ay, a9, ...,an}, lim M(a) = max{ai,as,...,an}.
a—r—00 a— 400
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Theorem 7 Triangle Inequality

Statement:

For z; € C,1 <i < n,

n
D
=

n
<D _lail
i=1

Proof: We only prove the base case since the inductive step is trivial: Let 21, 29 € C correspond to
the vectors @i and OB, respectively. Construct the parallelogram OAC B, so that z; + z5
corresponds to O? In AOAC we have

0C| < |OA] + 4.

Theorem 8 Jensen’s Inequality

Statement:

Let f: dom(f) — R be a convex function. For any n € N and any A1, s, ..., A, € (0,1) with

=

and any x1,zs,...,x, € dom(f), we have

f(zn: Ai a?i) < Zn: N ().

i=1 i=1

Proof:
We proceed by induction on n. For n = 1 the result is trivial. Assume the inequality holds for n = k.
Consider A\1,...,Ap+1 € (0,1) and 21,...,2,+1 € dom(f), and set

k
Dici i T

y= ,
1= kg1

k
so that Z)‘i =1—Apy1 and
i=1
k+1
Z X = (1= Xpg1) Y + Aot1 Thog1-
i=1

By convexity,
k+1
f (Z i :rz) < (0= A1) f(Y) + Ak f(@gp1)-
i=1

The inductive hypothesis applied to y gives

A
< : x
fly) < ; .
Combining these yields
k41 k1
P Niw) < D0 s,

completing the induction. |
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Definition 1 Majorizes

Description:

fx1>202> .. 220,01 292> ... 2 Yn, St

n
:Zy’m

n

> ai

i=1 i=1
k k
dDowi>Y y, V1i<k<n-—1,
i=1 i=1

then we said that (z1,zo,...,z,) majorizes (yi,y2,...,Yn), denoted as (z1,xo,...,T,) =
(ylvaa"'ayn)'

Theorem 9 Karamata’s Inequality

Statement:

Let f : dom(f) — R be convex, if (z;) > (y;), then

n

Z f(@:) > Z f (i)

=1

The reverse inequality holds when f concave.

Proof:
lemma: if f is convex over interval (a,b), then for Va < z1 < 25 < b, we have
f(x) = f(z1) < f(x) — f(z2)
T — T - T — To ’
proof of lemma: Just do casework on x ¢ {x1,x2}.
O
Back to the problem, defined
flai) = f(by) : :
= A; = j;aj,Ao =0 and B;= j;bj7B0 =0.

Since a; > a;4+1 and b; > b; 11, we get that ¢; > ¢;4+1. Now we can compute

n n n n n—1
i=1 i=1 i=1 i=

Zf(ai)_f(bi) = Zci(ai_bi) = Zci(Ai_Aifl_Bi‘f'Bifl) = Ci<Ai_Bz‘)_Z ciy1(Ai—B;) = (x)

1

and since A,, = By,

n—1 n

n—1
(1) =D ci(Ai = Bi) = Y cipa(Ai — Bi) = >_(ci —cit1)(Ai — Bi) > 0.
i=0

1 i=1

-
Il
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Theorem 10 Muirhead’s Inequality

Statement:

For ay,as,...,an, > 0, if (21,29, ..., xn) > (Y1,Y2, ---s Yn ), then

> [T > S I e

sym i=1 sym i=1

some useful result from Muirhead’s Inequality:
(2,0,0) = (1,1,0),

(a+b+c)? > gZa(b—kc).

cyc

(2,1,0) = (1,1,1),

(a+b)(b+c)(c+a) > 8abe.

(a,b) = (k,t) for some k < a,k+t=a+b, eg (5,1) = (4,2),

l’5y+l’y5 > x4y2 +l’2y4.

Proof: (by Lau Chi Hin)

Let (pi) > (gi), 1 <i <m, then there 3j,k, j <k, s.t p; > qj,px < qr and hence p; > ¢; > qr > pk.
Let b= w,d = PiZPE then [b—d,b+ d] = [pr,p;] D [ak,q;]- Let ¢ = max{|g; — b|, |qx — b|} then
¢ < d because if ¢ = q; — b for | € {j, k} since ¢ < b+ d, then ¢ — b < c and if ¢ = b — ¢; then since
qi > b—d, we also obtain b — ¢; < d. Consider (r;) s.t r; = p; except r; =b+ ¢,y =b— ¢, then
either r; = ¢j,r, =2b—q; =p; +pr — q; O T = qi, T = pj + Pr — g because if |g; — b| > g — b]
then g; — b can only be non-negative since g; > ¢i and if |g; — b| < |gr — b| then ¢ — b can only be
non-negative, then substitute the value of ¢ into 7;,r; and get what we want. Thus, we have

(pi) = (i) = (¢:). Now
n n
STt - 3 [Tt = Sasbont —ora = Xttt s bt
sym =1 sym =1 sym sym
For each permutation o, 3 permutation p s.t o(i) = p(i), Vi & {j,k} and o(j) = p(k),o(k) = p(j).
We pair the terms for o and p and observe that
(ajb-i-dakb—d_ajb-‘rcakb—c)_ (akb+dajb—d_akb+cajb—0) _ ajb—dakb—d(ajd+c_akd+c)(ajd—c_akd—C) > 0.
Then the sum
n n
ST - e =0
sym i=1 sym i=1
We notice that the number of identical terms between (r;) and (g;) is exactly one more than the

number of identical terms between (p;) and (g;), repeat this process until (r;) = (g;) then we are done
|

Remark: 1t is a really hard proof and let me explain what’s going on at the last step: We now
replace (p;) with (r;), do the same thing to get (r;) which is originally the (r;), then we have

S [Ler - S ] =0
sym i=1 sym i=1
which imply

DI EED I IR N | KEEDIN I RS I | AR ) | i

sym =1 sym i=1 sym =1 sym =1 sym =1 sym i=1
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Theorem 11 Rearrangement Inequality

Statement:

For a; < az < ... < ay, and by < b < ... < by, let by(1),by(2); -+, bo(n) be the permutation of
by, ba, ..., by, then

n

n n
Z a;b; > Zaiba(i) > Zaibn+1—i-
= =l =i

Proof:
Let

(c1,¢2yyCp) = argmax ){ Zaibg(i)},
o)\ i=1

(bo(1)s05(25--+5b

then ¢; < e¢p < ... < ¢, otherwise 3¢ s.t ¢; > ¢;41 but then (a; 41 — a;)(¢; — ¢i+1) > 0 gives
aiCit1 + a;y1¢; > a;¢; + a;y1¢i41, contradiction. Hence (¢;) = (b;).

On the other hand, let

(d1,dg,...,dn) = argmin { Z a;iby (i },

(bo(1),bo(2) 5200 (n)) | i=1

Similarly dy > dy > ... > d,, otherwise 34 s.t d; < d; 41 but then (a;+1 — a;)(d; — dit1) < 0 gives
aidi“ + ai+1di < a;d; + ai+1di+1, contradiction. Thus (dz) = (bn+1—i)~ [ |

Theorem 12 Chebyshev’s Inequality

Statement:

Let a1 > as > ... > an,b; > by > .. > b, be reals, then

n n n n
nS bz (z ) (z m) oS abr s
i=1 i=1 i=1 i=1
Both equalites hold at the same time when a; = a; or b; = b; for 1 <4,j < n.

Remark: Chebyshev’s Inequality is also true when a; < ag < ... < ayp, b <bs < .. < b, (just let
¢i = Gpt1—i,d; = bpt1—; then apply Chebyshev’s Theorem as usual) and the reverse inequality holds
when a1 > as > ... > a,,b1 < by < .. < b, which is actually the second inequality

Proof:
ForV1<i,j<mn, (a;— aj)(bi — bj) >0« ajb; +a; +b; > a;b; + a;b;. Then

(zn: ai> (Zn: b1> = Z aibj = % Z aibj —|—Cljbi < % Z a;b; —l—ajbj = ’ni:aibi.
=1 =1

1<i,j<n 1<i,j<n 1<i,j<n i=1

The second inequality is because (a; — a;)(b; — b;) < 0. [ |
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Theorem 13 Surdnyi’s Inequality

Statement:

For z1,x9,...,2, >0,
n n n n
=3 +oflaz (Xa) (Sa)
=1 =1 =1 =1

Proof: (by Mihaly Bencze)

Apply induction: The case n = 2 is trivial, suppose Surdnyi Inequality is true for some n > 2 and we
prove for n + 1. Since this inequality is symmetric and homogeneous, WLOG let

T1> X9 > > Xy, Z?:ll T; =Tp41 + lie Y. x; = 1. Now what we want to prove is

n+1 n+1 n+1 n+1
nzxinﬂ +(n+1) H T > (Z mi> (Z l‘i"),
i=1 i=1 i=1 i=1

which is equivalent to prove

n n n n
1 1
n g z;" T+ nmﬁil + NTpi1 | I Ti+ Tpt1 I | x; — (14 a:n+1)< g ;" + xz+1> > 0.
i=1 i=1

i=1 i=1

by inductive hypothesis,

NTp i1 sz > Tpyl 5 x;" (n—1)xp41 E "

only need to prove

n n n n n
- -1
ani"H—in”—an nE xi"—in" o H:r +(n—=1xy, —xp | >0,
=1 i=1 i=1 i=1

i=1

Consider
n n n n n
nZwi" — Zxk”_l = nZwi" — <Z xk”_1> (Z 1:1) >0,
i=1 i=1 i=1 i=1 i=1
which is true by Chebyshev’s Inequality and also
nx;" T+ %xi’“l > 2x,",

which is also true by AM-GM Inequality, then sum through 1 < ¢ < n we have

n n 1 n n
ny =y > = (nzxz" - Zxk”_l>7
i=1 i=1 "\ = i=1
which means
n n n n
nz z" T — Z " — Ty (n inn - Z Jcin_l) >0,
i—1 i—1 i=1 i=1

because x, 1 < + L3 @ = =, remains to compute

1
n’

n

-1 -1

| I i+ (n—1r, " — Tyl = H(xz = Tpy1 + Tpy1) + (0 — Dzpg” — Tyt
=1

—1
> Tpy1" — E —Zpt1) + (= Dzp" —z ) =
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Theorem 14 Bernoulli’s Inequality

Statement:

Form 1:
Let 0 # x> —1. If o ¢ [0, 1], then

(14+2)* > 1+ ax;

if & € (0,1), then
(1+2)* <1+ az.

Form 2:
Let z1,29,...,z, > —1 and all z; are either non-negative or non-positive. Then

n

=1 i=1

with equality iff at least n — 1 of the z; are zero.

Proof:
Proof of Form 1
Define
f@) = (1+2)° —1—ax,

f/(l‘) = C%(l + 1‘)a_1 —a= OZ((l =+ x)a—l . 1)

When a ¢ [0,1], (1 +2)*! > 1iff x > 0, hence f'(z) > 0 for > 0 and f(0) = 0, giving
(1+2)* > 1+ az. Similarly, if 0 < a < 1, then (1 +2)* ! > 1iff x <0, so f'(x) > 0 for z < 0 and
again f(0) =0, yielding (1 + z)* < 1 + az. |

Proof of Form 2
We prove the generalized form by induction on n.
Base case n = 2:
(1+£L’1)(1+£L’2) = 1+$1+$2+I11’2 2 1+£L’1 + 9.

Assume for n — 1 that
n—1 n—1

=1 i=1

Then
n n—1 n—1 n n—1 n
H(l—l—xi) = (H(1+xi)>(1+xn) > <1+in>(1+xn) = 1+in+2xixn > 1—|—in.
i=1 i=1 i=1 i=1 i=1 i=1

This completes the induction. |



30 CHAPTER 1. ALGEBRA

Theorem 15 Minkowski’s Inequality

Statement:

For ay,as,...,a,,b1,b2,...,b, >0and p > 1,

(Sreor) < (B) - ()

bp:bp,V1<zg<n

When 0 # p < 1, the inequality change sign.

Proof:
When p > 1, by Holder’ s inequality,

o ) - )

Similarly,

o=

and hence

The case 0 # p < 1 is similar. [ |

Theorem 16 Nesbitt’s Inequality

Statement:

For a,b,c > 0,

S
Y
O] W

b+c

Equality holds when a = b = c.

Proof:
By Cauchy-Schwarz Inequality,

( bic><2a(b+c)>2<2a> :(a+b+c)2232a(b+c).

cyc cyc cyc

The last step is by Muirhead’s Inequality when consider (2,1,0) > (1,1,1). [ |
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Theorem 17 Hermite—Hadamard Inequality

Statement:

For any convex function f : dom(f) — R if a,b € dom(f), a < b, then

() <o [ @ a < (OO

2 b—a 2

If f is concave, then both inequalities reverse.

Proof:
Set x =ta+ (1—1t)b, so dr = (b—a)dt and

b 1
/ f(:c)dzz(b—a)/ f(ta+ (1—1)b)dt.

0

Since f is convex, for each ¢ € [0, 1],

Flta+ (1 —)b) <t f(a)+(1—1) F(b).

Integrating over [0, 1] gives

b 1 .
bia/a f(x)dmg/o (tf(a)+(1_t)f(b))dt:w'

On the other hand, by Jensen’ s inequality,

f(a;b) =f</01(ta+(1—t)b)dt> S/Olf(ta+(1—t)b)dt: bia/abf(m)dx.

Combining these yields the desired result. |

Lemma 1

Statement:

For n, k € Z~y,
n) _Lfen\t
k e\ k)~
k

< n*, divide both side by k! gives (Z) < %, only need to prove

(n—k)!
k!> e(%)k, we finish the proof after noticing

Proof: It is obvious that

k k
Zlniz/ Inzde==Fknk—Fk+1.
i=1 1
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1.2 Algebraic Identity

Theorem 18 Nicomachus’ Theorem

Statement:
For n € Z~y,
Y= () = [5)
k=1 k=1
Proof:

We use induction on n. For n = 1 the identity reads 1* = 12, which holds. Assume

Zk3 [7’” iy

Then
SC R S R 4 (g 1) = [P 08— e 12 (1) - [ D272
Z Z (n+ {T}.+(n+ )P =(n+ )(I+n+)—[f},

completing the induction. ]
Lemma 2
Statement:

For z,y € C and n € Z~,

Form 1:

=1,
xn_yn:(x_y)zxn 1 kyk
k=0
Form 2: For 2 1 n,
n—1
eyt = (zy) Y (F)FanTiTEy
k=0
Proof:
For the difference, observe the telescoping sum
n—1 n—1
" — yn _ Z(:cnfkyk _ xnfkrflykﬂrl) _ (.’E o y) Z xnflfkyk:‘
k=0 k=0
When n is odd, set 4’ = —y. Then
n—1 n—1
2yt =a" = () = (=) e R = () Y (—D)F e TR,
k=0 k=0
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Theorem 19 Lagrange’s Identity

Statement:

For ay,as,...;an,b1,b,....b, € R,

n n n 2
(Zaﬂ) (Zbi2><zaib¢> _ b — ab)? =
=l =t =L 1<ij<n 1<i<j<n

vector form: |@ x b2 + (@ - b)% = |a@|2|b|2.

N | —
—
S
S
o>
<
S
<
S
S
N
[\v]
—
S
S
Sa
S
<
o
S
S~—

Proof: Directly obtain from Method 1 and Method 3 in Cauchy-Schwarz Inequality section. |

Theorem 20 Abel’s Transformation

Statement:

For ay,as,...,an,b1,bs,...,b, € C, defined S = Zle b;, then
n n—1
Zaibi = Sphan + Z Si(a; — ait1).
i=1 i=1

Proof:
Method 1: (algebraic method)

n n n n n n—1
E a;b; = E a;(S; — Si—1) = E a;S; — E a;iSi—1 = E a;S; — E ai4+15;
i=1 i=1 i=1 i=1 i=1 i=0

n—1 n—1 n—1

=a,S, —a150 + Z a;S; — Z ai+15; = Spap + Z Si(a; — ait1).

i=1 i=1 i=1

Method 2: (combinatoric method)

ax

ay

Qap—1

Qp

by ba bn—1 by,

Apply double counting: we compute the area of these rectangles horizontally and get Y ;" ; a;b;. On
the other hand, we compute vertically obtain S, a,, + Z?;ll Si(a; — a;11). [ |
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Definition 2 Pochhammer symbol

Description:

35

For x € C,n € Z>p,n < z, the Pochhammer symbol define as

n—1

() = H(x —1).

=0

where ()1 = x and when z € Zs, (z), = zl.

Theorem 21 Binomial Theorem

Statement:

Form 1:
For a,b € C,n € Z~y,

Form 2: (Generalize)
For z,y € C,|z| < |y|,r € C,

Proof:
Form 1:

Apply induction on n: The case n = 1 is trivial, suppose the identity holds for n, then for n + 1,

(a+b)"" =(a+b)(a+b)" = (a+b) 2": (?) A = Tir:l <7ZL> S j_ié

i=0 i=0
By Pascal’s Identity,

n+1 n n n+1 n+1
ipn+1—i _ ipn+1—i
Do () (1) -5 ()

Form 2:
Consider f(a) = (1+a)", |a| < 1 for Vi € Z>o, we have

FO(a) = (r)i(1 +a)",
70 _ (r
5e=()

(1+a) = g (Z)al

take a = E, multiply both side by y" and we are done.
Y

SO

Therefore by Taylor series of f(a),

n . .
zbn+1fz
<@' - 1>a ’
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Theorem 22 Multinomial Theorem

Statement:

For k € Z+y, n € Z>p, and any commutative ring or field,

k

(=)= % (") e

i=1 ni,...,n, >0 =1
ni+--F+ng=n

Proof:
Consider the expansion of
(1 + a2+ +ag)"

as the product of n identical factors (z1 + - - - + zx). Expanding without simplification yields terms of
the form
x?1x5’2...xz’k, n1+.+nk:n

For each fixed tuple (ni,...,ng), there are
x;. Hence

—— 22— ways to choose which factors contribute each
ni!ng! - ng!

n!
(x1+ - +x)" = E ——— "ty apk
nl! PR nk'
ni+--+ng=n

Theorem 23 Hermite’s Identity

Statement:

For z e R,n € Z~g

k=0
Proof:
Define
n—1 k’
fa) =% o+ 3] - lnal
k=0
Then

n—l{ k;+1J u_("_l{ J 1)~ (Inz) +1) = f(a)

k= k=0

o

1 1 k
Hence f is periodic of period —. For = € [O, —) each term {:c + —J =0and |[mz| =0, so
m m m
f(z) = 0. Therefore f =0, as required. |
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Theorem 24 Landau’s identity

Statement:

m,n > 1 are coprime odd integers, then

m—1 n—1

1 S - tioy

=il k=

ol
_

Proof:
Consider the set

—1 -1
Az{xm—yn:lngnT, 1§y§m2 }
First, if
xm —yn =2'm —y'n

then (x —2')m = (y — y')n. Since ged(m,n) =1and 1 <z,2’ < nT < n, we deduce = z’ and
hence y = 4/. Thus all elements of A are distinct, giving

4] = (mfli(nfl).

-1
On the other hand, xm —yn > 0 iff y < @. For each integer x € {1, R nT}, there are LmJ
n n

choices of y, so exactly

n—1

2

— L n

nonnegative elements in A, a similar count shows there are

m—1

2
>

m

y=1

nonpositive elements. Since 0 ¢ A, every element of A is either positive or negative, and is counted
exactly once. Hence

[

n—1 m—

2

A=3|T + 5)

=1

<

Combining the two expressions for |A| yields the identity.

Lemma 3

Statement:

For a,b € R,
la —b] = a+b— 2min{a, b}.

Proof:
WLOG a >bthen |a—bl=a—-b=a+b—2b=a+b—2min{a,b}.
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Lemma 4

Statement:

For a,b € R,
la+ ] — Ja — b] = 2sgn(a) sgn(b) min{al, o]}

Proof:
WLOG let |a| > |b|, there are two cases:
1. a,b same sign: sgn(a) sgn(b) = 1. Then

la+b] = la| +[bl, |a—b]=]la| - [b]| = |a| —[?].

Hence
la+b] —[a—0b| = (la] +[b]) — (Ja| — |b]) = 2|b|] = 2sgn(a) sgn(b) min{|al, [b]}.

2. a,b opposite sign: sgn(a) sgn(b) = —1. Then
la+b] =|la| = ||| =lal = [b], |a—b] = |a| + 0].

Thus
la+b| —|a—0b| = (la] — [b]) — (la] + [b]) = —2[b] = 2sgn(a) sgn(b) min{|al, |b[}.

Theorem 25 Binet—Cauchy Identity

Statement:

Let a;,b;,¢;,d; € C for 1 <i <n. Then

(i: aicl-) (i: bidi) = (z”: aidi) (En: bici) + Z (a;ibj — a;b;)(cidj — c;d;).
i=1 i=1 i=1 i=1

1<i<j<n

Proof:
Expand the last sum:

Z (aibj — ajbi)(cidj — dei) = Z (aici bjdj + a;Cj b,dz — Q;Cj bjdi — ;¢ bldj)
1<i<j<n 1<i<j<n

Observe that

n

Z (aici bjdj + ajc; bldl) = Z a;C; bjdj = Z a;C; i: bjdj - i: a;c; byd;,
j=1 i=1

1<i<j<n i#j i=1

and likewise

Z (aicj bjdZ + a;C; bldj) = zn: aidi En: bjCj — zn: aidi bzcz
i=1 j=1 i=1

1<i<j<n

Since Y, a;jc; bid; =, a;d; bic;, taking the difference yields

n n n n
E a;C; E bjdj — E aidi E bjCj,
i=1 j=1 i=1 j=1

which rearranges to the claimed identity. |
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Lemma 5

Statement:

For k € R, define
fe(z) =100 < k < x).

Then oo
min{a, b} :/0 fa() fo(x) da.

Proof:

Note that f,(x)fs(z) =1 exactly when 0 < z < min{a, b}, and vanishes otherwise. Hence

400 min{a,b}
/ fa(@) fo(z)de = / 1dz = min{a, b}.
0 0

Lemma 6

Statement:

For any a,b > 0,

|

max{a,b} = lim (a® +b%)°.

5— 00

Proof:
Let M = max{a, b} and set

i b
T:M7 0<r<1.

Then

e () ()T w0

The case a = b is trivial, consider r < 1, we have r* — 0 as s — co. Hence

1 In(1+7r8
lim (l—l—rs)‘i =exp| lim M) =¥ =1.

§—00 (s—)oo S

It follows that
= M -1 = max{a, b},

as claimed. [ |
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Theorem 26 Taylor’s Fxpansion

Statement:

Let f € C*°(I) on an open interval I containing a. Then for all z € I,

Following are some famous expansion,:

oo n

. x
n=0
s x2n+1
2. sing =Y (~1)" .
sinx 7;)( ) Gn i)
0 r2n
3. coszx :nz::o(—l) )l
= [«
4. (1 ¢ = "
(1+2) E_Z(n)w

Remark: Maclaurin series is the special case of Taylor’ s theorem with a = 0.

Proof:
Define

= (n) a — Y~ o T # a,
P =3 L0 ap, =] ol
n=0 0, T =aq.
Since f € C*(I), we have f)(a) = PU)(a) for 0 < j < k — 1. Hence both numerator and

denominator vanish to order k at x = a, and all hypotheses for L’ Ho6pital’ s rule are satisfied.
Applying I’ Hopital’ s rule k times gives

dk
—— (f(@) = P(@) )y — p
iilg hk,(.’l?) — }jll)r}l dﬂ?kdk — f (a) k' (G,) _
Al

Therefore the remainder Ry (x) = hy(z) (x — a)* tends to zero, and letting k — oo yields

() (g
fay =S L@ g,
n=0 :

n

Theorem 27 Goldbach-Euler Theorem

Statement:

Let .# be the set of positive integer which is a perfect power, then

1
s Tl
mE//Zm_
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Proof:
Every m € .# can be uniquely written as m = a* with ¢ > 2 and k > 2. Hence
—k _ - P J—
——Zzak_l D) )RS S B =Y o=l =t
meH k=2 a=2 k=2a=2i=1 n=2 k=2 n=2 n=2
|
Lemma 7
Statement:
Let n be an odd positive integer. Then for all z,y € C,
w—1
a2 —y" = [ (¢Ez— ¢k ).
k=0
Proof:
Since the nth roots of unity are 1,(,,(2,...,¢(" 1, we have the factorization
n—1
2 —1=[](z-¢h).
k=0
Substitute z = x/y (with y # 0) to get
n n—1
AN I1 (E _ k)
y" wo Y
Multiplying both sides by y™ yields
n—1
" —y" = H(xfdfy) (2.13)
k=0
Now, because n is odd, the map k +— —k (mod n) permutes {0,1,...,n — 1}. Hence
n—1 n—1
[[E-¢y) =T[E-¢ ).
k=0 k=0
On the other hand,
n—1 n—1 n—1
[[-¢Fy) Hc* [T(¢Ee—¢"y).
k=0 k=0
= n(n —1)
But Z(—k) == and since n is odd this exponent is a multiple of n. Therefore
k=0
10 ¢7F = 1. Substituting back gives
n—1
2=yt =[] (¢he - Fy),
k=0

as claimed. [
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1.3 Polynomial

Remark: All uppercase letters in this section are a polynomial.

Theorem 28 Little Bézout’s Theorem
Statement:
For any r € C and P(z) € C[z], 3! Q(z) € C[z] such that
P(z) = (z —7) Q) + P(r).

Proof:
k—1 n

Using the identity 2% —r* = (z —7) Sy, where Sy = Z 71718 = 1, and writing P(z) = Z a;x’,
i=0 i=1
obtain

P(z) — P(r) = Zak (a% —r¥) = (z —7) Z arSk,
k=0 k=1

we are done. ]

Theorem 29 Factor Theorem

Statement:
For P € C[z], if a is a root of P, then P(z) = (z — a)Q(x) for some Q.

Proof: It is true by Little Bézout’s Theorem since P(a) = 0. n

Theorem 30 Complex Conjugate Root Theorem

Statement:

Let P € R[z] and z € C. Then
P(z) =0« P(z) =0.

Proof:
Write
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Theorem 31 Fundamental Theorem of Algebra

Statement:

Form 1:
Let P € C[z] be a non-zero polynomial such that deg P = n, then P has exactly n complex
roots, not necessary distinct.

Form 2:
Let P € C[z] be a non-constant polynomial, then P has at least one complex root.

Proof: (by Frode Terkelsen)
For non-constant P € Cl[z], since | llim |P(z)] = 400, there exists zg € C such that
Z|— 00

|P(20)] < |P(2)], VzeC.

We now prove P(zp) = 0, hence z is a root of P.

P
Assume P(zp) # 0. WLOG let 29 = 0, P(29) = 1, otherwise we can replace P(z) by (;(1_§O).
0
Write
P(z) =1+ az" + 2" Q(z),
where n € Z~g, a # 0, and Q € Clz].
Choose w such that aw™ € Reg and |w Q(w)| < 1|a|. Then
|P(w)] <1+ aw™+ |w"+1Q(w)| <l4+iaw™<1,
a contradiction Therefore the theorem is proved. |

Remark: How can Form 2 implies Form 17 Let a; be a root of P, then P(x) = (z — a1)Py(z), for
some P; with deg Py = n — 1. Then we continue downgrade P (z) until

Pz)=(x—ar)(x —az) - (x — an—1)(ax + b). It is clear that ax + b has an unique root _Tb, so P
will have n complex roots.

Theorem 32 Mahler’s Coefficient

Statement:

For P € C[z] with deg P =n, 3 ag, a1, - ,a, € C such that

P(z) = kz:ak <Z>

Those a, is called the Mahler’s Coefficient.

Proof: Apply induction on n: The case n = 0 is trivial, suppose Mahler’s Coefficient exists for all
polynomials with degree at most n — 1, then consider P such that deg P = n and let its leading

coefficient be a,
deg (P(J:) —an (a:)) =n-—1
n

we take a,, such that
Note that such a,, is unique, which is a,, = nla, also by inductive hypothesis, there exists unique

ag, a1, ..., a,_1 such that
n—1
x x
P(z) —ay, = .
(&) -a (n> 2 “’“<k>
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Lemma 8

Statement:
If ran(P) C Z, then the Mahler’s Coefficient of P are integers.

Proof:
Let ag, a1, ..., adeg p be Mahler’s Coefficient of P, we apply induction: Note that ap = P(0) € Z, now
suppose ag, ...ap—1 € Z, then consider

p=ao(1) () ()

this equation give us ay € Z. |

Theorem 33 Rational Root Theorem

Statement:

n

Form 1: For P(z) = Zaimi € Z[z], it P is a rational root of P for (p,q) = 1, then p | ag and
‘ q
1=0

q|ap.

Form 2: If P € Z[z] is monic, then all rational roots of P are integer.

Proof: »
Multiplying ¢™ on both sides of equation p(,) = 0 gives
q

n—1
anp” +aog" + Y ap'q" =0,
=1

which means p | ag and ¢ | ay,. |

Definition 3 Elementary Symmetric Polynomial

Description:

e N

Elementary Symmetric Polynomial of z; is defined as

a= Y I[e

IC[n],|I|=k i€l

e.g o1 = E i, O = E XTilj, 03 = E TiZjTE, =y Op = T1T2 " Tp.
i

i<j i<j<k
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Definition 4 Symmetric Polynomial

Description:

P is a symmetric polynomial if for any permutation yi,¥ys, - ,y, of x1,xs, -+ ,z,, has
P<y17y27 7yn) = P(.’L’]_,JJQ, e axn)'

Theorem 34 Fundamental Theorem of Elementary Symmetric Polynomial

Statement:
For any symmetric polynomial P(z1,xs,...,Z,), there exists a unique polynomial
Q(O’1, 02,... 7O'n)
such that
P(xy,xo,...,o,) = Q(O’l,O'Q, . ,crn)7

where o; is the elementary symmetric polynomial of z;.

Proof:
Check out Symmetric Polynomials: The Fundamental Theorem and Uniqueness by Nicholas Kender.
https://www.math.union.edu/~hatleyj/student_theses/kender.pdf

Theorem 35 Vieta’ s Theorem

Statement:

n
Let P(z) = Zai z', a, # 0, and let 71,79, ..., 7, be its roots, then for each 0 < k < n — 1,
i=0

ar = (-1)"*a, op_s,

where o; is the elementary symmetric sum of ;.

Proof:
Note that

P(.’E) = an H(l‘ - ri) = an Z(_l) ok On—k -rkv

n
Matching coefficients of % in E a; T gives
i=0

ar = (_1) nk Qp On—k,

as claimed. ]


https://www.math.union.edu/~hatleyj/student_theses/kender.pdf
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Theorem 36 Newton’s Identities
Statement:

n n
Consider P(x) = Z a;x!, with complex roots r1, 7, ..., 7, for d € Z, define pg = Z r;%, then
i=0 1=1

Form 1:
k—1

kan_1 + Zan—ipk—i =0, V1<k<n
=0

if consider o; be the elementary symmetric polynomial of x;, one may express the identity as

k-1
(—1)*kay, + Z(*l)iﬂipk—i =0.
=0

Form 2: Vk € Z,

n
Zaipi_;,_k =0, Vk € 7.
1=0

Proof: (by Doron Zeilberger)
Let <7 (n, k) be the set of triples (A, j,¢) such that

AC|n], |A|<k, jeln], £=k—]A,
with the extra condition that if £ = 0 then j € A. Define

w(A, j,l) = (—1)"4‘ (H a:a> xﬁ.

acA
One checks by grouping terms that
k—1 4
(_1)kko—k+Z(_1)lO—ipk7i = Z U)(A,_],Z)
=0 (A,j.L)ed (n,k)
Now define an involution T : &7 (n, k) — & (n, k) by

7(a,4,0 = { AN UILHD), e d
Since w(T(A, j,£)) = —w(A, j,f) and T? = id, all weights cancel in pairs, yielding the desired
identity. |

Remark: Form 2 is trivial. Note that there are infinitely many identities: one for each choice of k.
This is why a lot of people call the above theorem "Newton’s identities” and not "Newton’s identity.”
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Definition 5 Minimal Polynomial

Description:

Let a € A, the unique monic polynomial of least degree such that
P(z) € Z[z] with P(a)=0

is called the minimal polynomial of «.

Definition 6 Cyclotomic Polynomial

Description:

a )

Cyclotomic Polynomial is the monic polynomial whose roots are the primitive n!* roots of
unity, denoted as
e, 2)= J[ @-¢b.

ged(k,n)=1
1<k<n

Lemma 9

Statement:

For any n € Z~,

In particular for prime p,

Proof: Over C we have the complete factorization into roots of unity:
2" —1= H (x = Q).
¢r=1
Grouping the factors according to the order of ¢ yields

[[Te-0=I II @@-d¢)=]]2u)

¢n=1 d|ln ged(k,d)=1 dln
1<k<d

Lemma 10

Statement:
®,, is irreducible over Q|z].

Proof: ®,, is minimal polynomial of (¥, 1 < k < n, hence irreducible over Z[z], also since ®,, monic,
we have ®,, irreducible over Q[z] by Gauss’s Irreducibility Lemma. |
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Lemma 11

Statement:

If n > 1 is odd, then
Dy, (2) = Dy (—2).

Proof:
Let &k := 2m + 1 with ged(m,n) = 1. Then

G = Gt =G Gon = G (1) = =(7
Hence

Co(0)= ] G@-¢o= JI G@-¢n= JI @+ =2e(-a.

ged(k,2n)=1 ged(m,n)=1 ged(m,n)=1
|
Lemma 12
Statement:
For any n € Z~q, ®,, € Z[z] and monic.
Proof: We argue by strong induction on n. For n =1, ®1(z) =z — 1 € Z[z]. Assume ®,4(z) € Z[z]
and monic for every proper divisor d < n. From the factorization
2" =1 = [[@a(z) = u(z) [ Palx).

d|n n#d|n

The product H O, (z) € Z[z] and monic so we are done. |

n#d|n
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Theorem 37 Lagrange Interpolation

Statement:

Let (z1,91), (22,92), - - -, (Zn,yn) be n distinct points with x; # x; for i # j. Then the unique
polynomial P(x) of degree at most n — 1 such that

P(xi):yiu V1§Z§n7

is given by:
n
T —T;
P = ; ==
(33) Z Yi H 7 — 7
=1 1<j<n
i
Proof:

Consider a polynomial of the form

f@)=Ao[J@—a2)+ A [J(@ =)+ + A ] (z — 2)).

J#0 J#1 J#n
Substitute x = x¢, we get:
Yo
o) =yo = Ao [J(wo — ;). = Ag= 2.
§#0 H(ﬂfo — ;)
#0
Substitute x = x1, we get:
Y
f(zl):ylel H(xlij)v = Alzil
j#1 H(fpl - zj)
i#1
Continue this process for each i = 0,1,...,n, we obtain

[ -2

f(z) = - L
;y [ — )

J#i
Thus,

Lemma 13

Statement:
If P(z) € Z for 14 deg P consecutive integers z, then P(z) € Z for Vz € Z.

Proof: Apply induction: The case deg P = 0 is trivial, suppose the statement is true for deg P = n,
then for n + 1, consider A = {a,a +1,...,a +n + 1} such that P(z) € Z for Vx € A. Note that
deg(AP(z)) =n — 1 and it’s also integer when take element of A as argument, by inductive
hypothesis AP(x) = 0, for Vx € Z. Consider AP(a) = P(a) — P(a—1) € Z= P(a—1) € Z, simply
apply induction to get P(x) € Z for Vz € Z. [ |
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Theorem 38 Descartes’ Rule of Signs

Statement:

Let f(x) € Rlz], then the number of positive real roots (counted with multiplicity) is either
equal to the number of sign changes in the sequence of its nonzero coefficients or differs from
it by an even number.

Likewise, the number of negative real roots is either the number of sign changes in the coefficients
of f(—x), or differs from it by an even number.

Proof: We prove the positive root case by induction on the degree n. Let f(z) € R[z] and let v(f)
be the number of sign changes in the sequence of its nonzero coefficients.
If f(z) has a positive real root r > 0, then we can factor

f(x) = (x—nr)g(z), with g(x) € R[x].
We will show that:
v(f) = v(g) + 1.

That is, factoring out a positive root reduces the number of sign changes by at least 1.
To see this, write:
f(x) = (z —7)(boz™ L + bz 2+ -+ by_1),

then:
f(@) =box™ + (by — rbo)x"71 + (by — Tb1)17n72 + o4 (=rbp—1).

Compare the sign sequence of coefficients: each term (by — rbx—1) is a linear combination of previous
coefficients and real positive number r > 0. At each step, if the sign of by, differs from that of by_1,
there’s a potential sign change in f(x) even if g(z) had none.

One can verify that factoring out a positive real root from a polynomial will cause either:

- the number of sign changes to drop by exactly one, or

- the number of sign changes to remain unchanged and the root has multiplicity > 1, so we still
subtract an even number from the count.

Thus, the number of positive real roots p (with multiplicity) satisfies

p <wo(f), andwv(f)—pis even.

A similar argument applies to f(—x), whose positive roots correspond to negative roots of f(z). So
the number of negative real roots is bounded above by the number of sign changes in f(—z), differing
from it by an even number.

Lemma 14

Statement:
If P(n) CQ, for all ¢ € Q. then P € Q[x].

Proof: Let a; be coefficient of P, 1 < i < n. Note that

1 0 R 0 aon P(O)
I PR L R P(1)
1 nt o a7 a, P(n)

where the square matrix on LHS is Vandermonde Matrix with pairwise different elements in
second column which is invertible. Thus, a; € Q since the coefficient of the inverse of the square
matrix is rational. |
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Theorem 39 Dyson’s Conjecture

Statement:

(2

a;
T; =
Let ay,as9,...,a, € Z>g. Then the constant term of H (1 — 1) is 71 .
> =
1<ij<n e |
ikg H G
i=0

Proof: (by I.J. Good)
Let f(ay,as,...,a,) be constant term of H (1 - xl) ,

i €
1<4,j<n

i#j
n
(X
glar,as,...,a,) = 1217
Hai!
i=0

We prove f(ai,...,a,) =g(a1,...,a,) by induction on Y a;.
When a1 = ag = --- = a, = 0, both sides are 1, so the base case is clear.
Note that g satisfies the recurrence: If ay,as,...,a, > 0, then

and let

glar,ag,...,a,) =glar — l,as,...,a,) + -+ g(ay,aa,...,an, — 1).

If ax = 0, then
glat, .. ak—1,0,ak41,--3an) = g(a1, .oy Ql—1, Q1 -« -5 Ap)-

So it suffices to show that f also satisfies the same recurrence.
When a; = 0, clearly

flat, .. a5-1,0 0541, an) = fa1, ..., Qk—1, Q1,5 an)-
When all a; > 0, we must show
flat,as,...,a,) = flar — 1,a2,...,a,) + -+ flai,az,...,a, — 1).

It suffices to prove

1<i,j<n 1<i,j<n i=1 j=1
i#j i#j i
That is, we need
n n T —1
1= 1-=
STI(1-%)
=1 j=1
J#i
Apply the Lagrange interpolation to the constant function f(z) =1 at x1,xo,...,z,, we obtain:
1= !
S
i=1 j=1
J#i

Set © = 0, then

as desired. [ |
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Theorem 40 Gauss—Lucas Theorem

Statement:

Let P(z) € C[z] be a nonconstant complex polynomial. Then all roots of P’(z) lie in the convex
hull of the roots of P(z).

Proof:
Let

then,

P'(z) i 1

P(z) —z- 2

Let P'(w) = 0. If P(w) =0, then w is a root of both P and P’, and lies within the root set of P, so
the conclusion holds trivially. Now assume P(w) # 0. Then:

This gives us

=1
Hence:
n n
PR D D
R TI— i

= [w— zi]? — [w — zif?

i=1 =1
Taking conjugate again gives us w is a linear combination of zy, ..., z,, with positive coefficient and

sum to 1, so lies in the convex hull of {z;}.
|

Theorem 41 Combinatorial Nullstellensatz

Statement:

Let F be a field, and let f(z1,z2,...,2,) € Flz1,29,...,2,] with deg f = dy +da + ... + d,.
Suppose the monomial x‘f%? -~z appears in f(x1,...,2,) with nonzero coefficient.
If Sq,...,5, CF with |S;| > d; for all 1 < i < n, then there exists (s1,...,8,) € S1 X -+ X S,
such that

f(sla"'75n) #O

Proof: (by R. N. Karasev and F. V. Petrov)
Assume |S;| = d; + 1 for 1 <4 < n. By Lagrange Interpolation, we have the identity:

" Mote) = S o) [
i=1 ' J

J#i

Then for e; < d; = |S;| — 1, let g(x) = z°, then

DR | e E

g, —
8:€S;  t;€8:\{s:} "
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Now consider a monomial z{* ---zé in f(z1,...,2,) with ¢; < d;. Then

n
€1 €2 €
g E .. E 8182...sn7lH

Sq

51€851 52€852 5n€Sn 1=1¢;€5;\{s:} i=1 \s;€S; t; €S8\ {s:}

1 " . 1 "
]‘_\[ Si—ti:H Z Si H A :H(Sei,dw
i\ 1S4 = 1=

which is I(e; = d;,V1 < i <n). Thus

28z (2, 2) = Z Z Z f(81,---,Sn)H H ‘it

. S i
51€S1 52€852 Sn€Sn i=1t;,€5;\{s:} ! ’

By assumption, the left-hand side is nonzero. Hence implies there exists some
(81,...,8n) €51 X -+ X S, such that

f(sla"'7sn)7£0'

Theorem 42 Mason—Stothers Theorem

Statement:

Let f, g, h € C[x] be pairwise coprime, nonconstant polynomials satisfying
f(z) + g(z) + h(z) = 0.
Then the number of distinct complex roots of the product f(z)g(x)h(z) is at least

max{deg f,degg,degh} + 1.

Proof:
From f(x) + g(z) + h(x) = 0, we differentiate:

f'(@) + g (x) + b (z) = 0.
Eliminating f(x), we obtain:

f'(@)(g(x) + h(x)) = f(2)(g'(2) + ' (2)),

which gives:
f(@)g(@) = f(2)g'(z) = f(z)W () — f'(z)h(z) == P().
Let (f, f') denote the greatest common divisor of f(z) and f’(z) as a polynomial, and similarly for

(9:9"), (h,R').
Then:

(£, 1) P(x), (9,9") | Px), (h1)]|P(x)
Since f(z), g(z), h(x) are pairwise coprime, the terms (f, ), (g,9’), (h,h') are also pairwise coprime.
So:
(f: 1)) x (9.9') x (h,h) | P(x).
Suppose P(z) = 0. Then:

i) f@)
a(x) ™ hw)

coprime and not all constant. Therefore P(x) # 0.

which implies

are both constant. This contradict to the statement f, g, h are pairwise
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Hence,

deg(f, f') + deg(g,g') + deg(h,h') < deg P.

Now write

with distinct z; and a; € Z~g, 1 <7 < k. Then:

k k
Py =c]Ja-a) [ Y [[@—2) |,
i=1 i=1 j#i
SO
k t

(f ) =c][@—2)*™" = deg(f,f) = (ai—1) =deg f —n(f),

i=1 i=1

where n(f) is the number of distinct roots of f(z).
Also note:

deg P(x) = deg(f'g — fg') < deg f +degg — 1.

So:
deg f —n(f) +degg — n(g) + degh —n(h) < deg f + degg — 1,

which gives
degh < n(fgh)— 1.

The same argument holds for f(x), g(z). [

Definition 7 Chebyshev Polynomial of The First Kind

Description:

The Chebyshev polynomial of the first kind 7, is defined by the recurrence relation:
Tht1(z) = 22T, (x) — Tho1(z), n>1

with Tp(x) = 1 and Ty (z) = =.

Lemma 15

Statement:

Let T,, be the Chebyshev polynomials of the first kind, then for z € C and n € Z>,,

T, (cos(x)) = cos(nx).

Proof:
Let us define f,(z) := cos(nz). We show that the sequence f,(cosx) satisfies the same recurrence as
T (x).
Note that
fo(cosx) = cos(0) =1, fi(cosz) = cosz.
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Using the identity
cos((n+1)x) = 2cosx - cos(nx) — cos((n — 1)z),
we deduce that
fnt1(cosx) =2cosx - fr(cosx) — fr_1(cosx).

Therefore, f,(cosx) satisfies the same recurrence as T;,(x) and has the same initial values. |

Lemma 16

Statement:

For any n € Z>g, let T,,(x) be the Chebyshev polynomials of the first kind, then the coefficient
of the term 2" in T},(z) is equal to 27! for n > 1, and 1 for n = 0.

Proof: Letting x = cos @, we start by using the identity:
T, (z) = cos(nf) el 4 emind _ (cos® +isinf)" + (cosf — isin 9)"’
2 2
we use the identity sinf® = v/1 — z2, and so we obtain:
(x4+ V22 —1)"+ (x — Va2 —1)"
5 .
Then the leading coefficient of T, can be calculated by,

1\" 1\"
T (1+y1-2) +(1-y1-%)
lim ﬂ = lim =on L

r—oo " T—00 2

T.(z) =

Lemma 17

Statement:

1. For |z| < 1, we have
Tn(2)] < 1.

2. T,,(x) has n distinct real roots in [—1, 1], given by

COS(M), 1<k<n.
2n

3. T,,(x) has n + 1 extrema in [—1, 1], occurring at

cos(lm>, 0<k<n,
n

and the extrema alternate between 1 and —1.

4. T,,(z) is an even function if n is even, and an odd function if n is odd.

Proof: Trivial by the identity 7T},(x) := cos(n cos™1(x)). [ |
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Definition 8 Chebyshev Polynomial of Second Kind

Description:

The Chebyshev polynomials of second kind U, (z) are defined recursively by:
Upii1(x) = 22U, (z) — Up—1(z), n>1.

with Up(z) =1 and Uy (x) = 2.

Lemma 18

Statement:

For any integer n > 0 and « € C, U,, be the Chebyshev polynomials of the second kind, then

U, (cosf)sin @ = sin((n + 1)0).

Proof: The case 8 = kr is trivial, assume otherwise, define

sin((n + 1)9).

sin 0

fn(e) =

We will prove that f, () satisfies the same recurrence as f,(cosf), hence they are equal.
Note that:

_ sinf _ sin(20)  2sinfcosf
fo(8) = s =1, fi0) = nd Sind = 2cosf.
and observe that in(( 2)6)
sin((n +
fry1(0) = T sng

_ 2cosf sin((n + 1)0) — sin(nd)

N sin 0

— 9058 sm((7'z+ ne) sm.(nﬂ)’

sin 0 sin 0

= 20089fn(9) - fn71<9)

Hence, f,(f) satisfies the same recurrence as U, (cosf), and matches the initial values. [
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Lemma 19

Statement:

1. Uy (z) has n distinct real roots in [—1, 1], given by

k
cos( il ), 1<k<n.
n+1

2. U,(x) has n + 1 extrema in [—1, 1], occurring at

with

Up(l)=n+1, Uy(-1)=(-1)"(n+1), U(zx)=(-1)F (1<k<n-1).

3. U, () is even if n is even, and odd if n is odd.

Proof: Trivial by U, (cos#)sin6 = sin((n + 1)0). [ |

Lemma 20

Statement:

Following are the recurrence relations between two kinds of Chebyshev Polynomial:
1. Th(z) =Up(z) — 2 Up_1(x).

Tn(x) — 2 Ty (2) .

2. Uy(x) = 1.2

Proof:

Set © = cosf. Then

sin((n + 1)0)
sin @ '

T, (z) = cos(nb), Un(z) =

(1)
sin((n 4 1)0) — cos 0 sin(nf)

sin 0
sin(nd) cos @ + cos(nb) sin @ — cos 6 sin(nd)

Un(z) —2Up—1(x) =

sin 6
= cos(nf) = T, (x).

Tn(x) — 2 Thq1(2) = cos(nf) — cos @ cos((n + 1)0) = sin b sin((n + 1)0),

SO Tp(x) — 2 Tpy1(z) _ sin®sin((n+1)0) _ sin((n+1)0) _ Un(z).

1— 22 sin’ @ sin 0
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1.4 Sequence

Definition 9 Fibonacci Sequence

Description:

The Fibonacci Sequence (f;,),>0 is defined by

fo=fn-1+ faa, n>2.

with fo =0 and f; = 1. f, is called the Fibonacci number.

Theorem 43 Binet’s Formula

Statement:

Let (fn)n>0 be Fibonacci Sequence, we have

sDn_wn

fn: \/5

1+v6  1-v6
2 ¥ = 2

where ¢ =

Proof:
Noted that the roots of the quadratic equation 22 — z — 1 = 0 are ¢ and . We claim that

" = fnm + fn71~

Apply induction: The case n = 1 is trivial, suppose for n our claim is true, then for n + 1,

" =ga" = a(fprt fai1) = o F foorr = fal@+ D+ foo12 = (fa+ foo)T+ fo = far1z+ fo.
]

Theorem 44 Cassini’ s Identity

Statement:

Let (fn)n>0 be Fibonacci Sequence, then

fatforr = fa = (=)™

for n € Z~y.

Proof:
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Theorem 45 Catalan’s Identity

Statement:

Let (fn)n>0 be Fibonacci Sequence, then
fn2 - fn+rfnfr = (_1)n_Tfr2~
For integer 0 < r < n.

Proof:
Using Binet’ s formula,

5(fn = Farfuir) = (" = 0")7 = ("7 =" (" ="
_ (p2n _ Q@nwn + ,(/)2” _ [(an _ <P7L_T¢ n+r _ g0n+r¢ n=rT oy w2n]

—2(pY)" + Q" TP YT

_2(_1)n + (_1)71—7”(()027' + wQT) _ (_1)n—r((pr _ wr)

2

=(=D"T5f
[ |
Theorem 46 Gelin-Cesaro Identity
Statement:
Let (fn)n>0 be Fibonacci Sequence, then
fn4 - fn—2fn—1fn+1fn+2 =1
for integer n > 2.
Proof:
WLOG let 2 | n, by Catalan’s Identity (r = 1,2),
fn+1fn—1 - ,fn2 =1= fn2 - fn+2fn—2a
then
fn4 -1= (fn2 - 1)(fn2 + ]-) = fn—2fn—1fn+1fn+2-
|

Theorem 47 d’ Ocagne’ s Identity

Statement:

Let (fn)n>0 be Fibonacci Sequence, then

fmfn+1 - ferl fn = (_1)nfmfn~

for integers m > n > 0.
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Proof:
By Binet’ s formula we compute

Fn et = Frvit o = (7 =" = ) = () — )]
= [emv — 47"~ o)
- % (g — i) = = X2 (pmen —ymn)
(1 E e = (1) f
[ |
Theorem 48 Vajda’ s Identity
Statement:
Let (fn)nso0 be Fibonacci Sequence, then
Favr s = fufuirs = (1" fo
For integers n, m, 7, s with n > s.
Proof:
By Binet’ s formula, we compute
Fte frcs = Fu Fuvos
= [ =y = ) — (o = g (™ )
= [ T = e — e Ty — )]
ST ey
_ (- t/f’“)5(w5 —¢°) (1) = (—1)"5 f, o,

Theorem 49 Honsberger’s Identity

Statement:

Let (fn)n>0 be Fibonacci Sequence, then
fmflfn + fm fn+1 = fner-

for integers m > 1 and n > 0.

Proof:
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By Binet’ s formula, we have

sOWL—l _ wm—l (pn _ ¢n (pm _ wm @n+l _ wn—i—l

fm—lfn+fmfn+1: \/5 \/5 + \/5 \/5

|:<pm+n—1 _ @m_1¢n _ 1bm—lﬁpn + wm—!—n—l

+ §0m+n+1 o ¢m¢n+1 o wmgonJrl + ¢m+n+1:|

| =

[(pm+n_1(1 +902) +wm+n—1(1 +,(/)2)

— T (L4 ) — Pl (1+ saw)]

ot| =

= é[so’"*"‘l(l )T 4] (v = 1)

= e eI 4| (Pl =)
% |:<Pm+n71 5 +2\/5 + wm+n71 5 72\/S:|
SDWLJrn _ q/)m,an

= —\/5 = fm+n

Definition 10 Lucas Sequence

Description:

The Lucas Sequence (L,,),>0 is defined by
Ly=Ln 1+ Ly 2 n2>2,

with Lo =2 and L; = 1. L,, is called the Lucas number.

Theorem 50 Closed Form of the Lucas Sequence

Statement:

The closed form of Lucas Sequence (L,,),>o is given by
L, = " +9",

1++5 1-5
7 '

where ¢ =

Proof:
Consider the characteristic polynomial of the recurrence:

r?—r—1=0,
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whose two roots are ¢ and .
Hence the general solution of the recurrence is

L,=Ap"+ By"
for constants A, B. Using the initial conditions:

Lo=2=A+B,
Li=1=Ayp+ By,

we solve for A and B. Since ¢ + 1 = 1, one finds
A=1, B=1.

Therefore
Ln = Son + wna

as claimed. [ |

Definition 11 Farey Sequence

Definition:

The Farey sequence of order n is the ascending sequence of all irreducible fractions % with
0<a<b<nand ged(a,b) =1.

Lemma 21

Statement:
a a’ . ) a ad
Let 3 and ¥ be consecutive terms in the Farey sequence of order n, with 3 < a Then
b+b >n+1, a'b—ab =1.
Proof: ,
We try to confirm %. Consider x,y € Z s.t
br—ay=1 and n—b<y<mn,
there 3 such z,y because there is a solution for ay = —1 (mod b) which is —a~! (mod b) and

consider the complete residue system mod b, {n,n—1,...,n— (b—1)} := R, pick y € R and
y=—a"! (mod b).

a x a a z
Now we prove that infact v Suppose not, recall that 3 and i are consecutive term, and — also

one of the term in Ferray Sequence of order n (obviously we have 0 < y < n and ged(z,y) = 1), also
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SO
z ad b’x—x’y> 1
y b by Ty
Similarly,
a  a 1
— >
b b — by
hence
Loz a1 1 ysyses
-4 - - n
by y b= by by =Y ’
contradiction./

So we have % =7 which also means that
y

z=ad, y=1"V.

now
ba'! —Va=br—ay=1, b+b =b+y>n.

Definition 12 Characteristic Polynomial of Linear Recurrence Relation

Statement:

Let
Unik = ClOntk—1+ C20p1k—2+  + Ck Gn, n > 0,

be a linear homogeneous recurrence with constant coefficients. Its characteristic polynomial
is the polynomial degree k .

k k—1 k—2

plx) =2 —c1a" " — e T — - — .
Remark: consider linear transformation
¢k C2 -+ Cg—1 Cg
1 0 0
_ |10 1 0 0
A= ;
0 O 1 0
then we have
An+k—1 An+k
An+k—2 An+k—1
QAn an'+1

then the characteristic polynomial of A is actually the definition of characteristic polynomial of the
linear recurrence.
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Theorem 51 Closed Form Solution of a Linear Recurrence

Statement:

Let (an)n>0 satisfy the linear homogeneous recurrence
On+k = C1 Opyk—1 + C2 Antk—2 + -+ 4 Ck Qp,
and let the complex roots of its characteristic polynomial be A1, Ag, ..., A\, with multiplicities

m
€1, €2, ..., €y Such that Z e; = k Then the general term admits the closed form
i=1

m
an = ZPi(n) A2,
i=1
where each P;(n) is a polynomial with deg P; < e;.
Proof: We use linear algebra: define the forward shift operator E by
Fa, = ant1.
Then the recurrence is equivalent to

p(E)a, = (Ek—clEk_l—---—ckI) a, = 0,

where [ is the identity operator. Since

we have

[[(E - XD a, =o0.
i=1

Since the factors (E — A\;I)¢ are pairwise coprime as polynomials in F, we have
kerp(E) = @ ker(E — \1) o
i=1

For a fixed root A of multiplicity e, the equation
(E—=X)°u,=0

expands to a linear difference equation of order e, whose general solution is

e—1
Up = Z C; n’ A",
j=0
i.e. a polynomial in n of degree < e times A\". Hence
dim(ker(E — \1)%) =e;, 1<i<m
with basis {n/ A" : 0 < j < e;}. Summing over all i yields
m e;—1 m
an = > > Ciyn? A} = > Pi(n) A},
i=1 j=0 i=1

with deg P; < e;. This completes the proof. |



1.4. SEQUENCE

67



68 CHAPTER 1. ALGEBRA

1.5 Complex Number

Remark: In this section, we use i := v/—1 as the imaginary unit.

Theorem 52 De Moivre’s Theorem

Statement:

For any 0 € R and n € Z,

(cos@ +isinf)" = cos(nd) + isin(nd).

Proof:
We first prove that it is true for all n € Z>¢. The base case is trivial. Assume for some k € Z>,

(cos @ 4 isin0)* = cos(kf) + i sin(k@).
Then
(cos @ 4 isin @)1 = (cos @ + isin 0)*(cos @ + isin §) = (cos(kB) + isin(kB))(cos O + isin h)

= coskf cos§ — sinkfsin + i(coskfsinf + sin k6 cos §) = cos((k + 1)0) + isin((k + 1)6),

completing the step.
For n < 0, write n = —m with m > 0. Then

(cosf +isinf) ™™ = ((cos 6 + isin6)™) ~lo cos(—m#@) + isin(—m#@) = cos(nb) + isin(nb),

using the fact that cos is even and sin is odd.

Theorem 53 FEuler’s Formula

Statement:

For any 6 € R, one has 4
e’ = cosf + isiné.
Proof: (Power-series proof)
Recall the Taylor expansions for real x:

- 0 " 0 X ka ) oo A $2k+1
e :ZH7 cosmzZ(—l) o smm:Z(—l) R n
n=0 k=0 k=0
Substitute x = ¢6 into the exponential series:
i _ N~ (00)" - @00 g (0)%
¢ _n; ! _kZ:O 2h)! +}§(2k+1)!'
Noting i?f = (—1)* and 2**! = (—1)" 4, this becomes
= . 0% & L 62 o
e’ = z::(—l) k)] + zZ(—l) ] = cosf + isinf.

k=0
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Theorem 54 Fuler’s Identity

Statement:
em+1=0.
Proof:
by Euler’ s formula. |
Theorem 55 Gauss Sum
Statement:
Let p be an odd prime, then
p—1 =
Z " +/p, p=1 (mod 4),
C =
= +i/p, p=3 (mod 4).

Proof:
Define the polynomial

k=1

where <k> is the Legendre Symbol. Our goal is to show
p
-1
9(G)* = () p-
w(Cp) 5

(a) =0 whenever p| a.
p

Recall that

Then one may equally write

Observe

00(G)? = ZZ(;) (5) e

=0 k=0

Since ¢} = 1, reduce exponents mod p and collect like terms to get

p—1
9()* = aigy, (1.1)
k=0

where for each n € Z,

Since
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(because ZX has equally many residues and non-residues), it follows g,(1)? = 0 and hence

p—1
> ar=0. (1.3)
k=0

By (1.2), | L
v T OO-ER0
But
2O-G)O {2, 10
SO

Forn e {1,...,p—1}, by (1.2)
i\ [k
we 2 06)
o p p
j+k=n (mod p)
Set j =nj’, k =nk’. Then j'+ k' =1 (mod p) and
n -/ nk/ -/ k/
CETR VI O [ R S ) ) R
j'+k'=1  (mod p) p p j'+k’'=1  (mod p) p p

hence
apy =4az = - =dp—1- (15)

Combining (1.3) and (1.5) gives
ao

ap+(p—1)a a1 b1

-1
)
56 =G (=1 = G+ G+ + ).

But 14 ¢, +---4+¢21 =0, hence ¢, +---+ (2! = -1, and

gp(Cp)Q = (_71) y2

This completes the proof of the Gauss sum formula. |

By (1.4),

so from (1.1)
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1.6 Function

Definition 13 Injection

Description:

e 3

A function f: X — Y is injective iff:
f@)=f@) = a=d.

In other words Vx € X, 3 different y € Y such that x map to y by f, so we can conclude that
if there’s an injection maps X to Y, then | X| < |Y].

Definition 14 Surjection

Description:

A function f: X — Y is surjective iff:
Yy € Y, 3z € X such that f(x) =y,

which also gives us that if there’s a surjection maps X to Y, then |X| > |V

Definition 15 Bijection

Description:

A function f : X — Y is bijective iff it is both injective and surjective, so if there exists a
bijection maps X to Y or the oher way round, then | X| = |Y|.

Definition 16 Involution

Description:

A function f: X — X is an involuon iff

f(f(x) =2, VrelX.

Lemma 22

Statement:
f is an involution = f is bijective.

Proof: omitted. n
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Definition 17 Concave and convez function

Description:

73

f:dom(f) — R is called a concave function if Vz,y € dom(f) and VA € [0, 1], the inequality
fAz+ (1= Ny) =2 Af(2) + (1= A)f(y)

always holds. (for convex, change the inequality sign to <)
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Chapter 2

Combinatorics

2.1 Combinatorial Identity
Definition 18 Gaussian Binomial Coefficient

Description:

n,k,q € Z>o, ¢ > 1, we defined Gaussian Binomial Coefficient as:

(n) _ (" —1)(g" 1 —1)...(g" F+1 —1)

k (" =D =1)--- (¢ - 1),

for k < n, and it’s equal to 0 when k& > n.

Theorem 56 Pascal’s Identity

Statement:

Form 1:
For k,n € Z~y,

()= 0+ G2)

Form 2: (Gaussian Binomial Coefficient’s version)

For n,k,q € Z~o, g > 1,
(n) qk <n— 1> (n— 1)
k q k p k—1 q

Proof:
Proof of Form 1
The case k > n is trivial. Consider k < n, then

(Z: 1) * (n k 1> ~ —(?)!_(7?i A k!(fzn—_klz!l)! = (-1t k'(%—k)' = (Z)

Proof of Form 2

7
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Again assume k < n, let ¢® — 1 = 2, then the equation we want to prove is equivalent to

—k+1
H?:n—k—i—l Ly _ kHz n—k L H?:n—l €T

k =4q E Lt F—1
[Tim) @i [Tz 2 [Ticy =

which is true. [ |

& T, = qun_k + xk.

Theorem 57 Root of Unity Filter

Description:

The technique root of unity filter allow us to extract numbers that divisible by n using n'"
roots of unity

I(k | n) = kZ§

We can also express in polynomial form

?x“
,_.

E G,

k|t<n

x| =
-
I
o

where a;,1 < i < n are coefficient of P.
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2.2 Extremal Combinatorics

Theorem 58 Pigeonhole Principle

Statement:

m—1
If m objects are put into n boxes, then 3 one box contains > {J + 1 object, and one box
n

. m .
contains < {—J object.
n

m
Proof: Suppose in contrary, if all boxes contain < {J objects, then total object
n

m—1
<n {J < m, contradiction. Similarly we can prove the other case. |
n

Theorem 59 Well-Ordering Principle

Statement:

For S C Z>p and S # &, then there exists m € S such that

m < s Vselb.

Proof:

Assume, for contradiction, that there is a non-empty S C Z>o with no least element. Choose any
s1 € S. Since s; is not minimal, there must exist so € .S with so < s;. Continuing in this way
produces an infinite strictly decreasing sequence

§1 >89 > 83 > -+

of natural numbers, which is impossible since the smallest element in Z>( is 0. Hence S must have a
least element. |
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2.3 Probability

Definition 19 Ezpected Value

Description:

The expected value of a discrete random variable X is define as
E[X]:=) z-P(X =u),
while for continuous random variable,
E[X] := / zfx(z) dz,
R

where fx is the probability density function.

\. J

Following is the list of the expected value of some distribution: the value for E[X] of
Binomial Distribution X ~ B(n,p) is np,

Bernuolli Distribution X ~ Bern(p) is p,

Geometric Distribution X ~ Geo(p) is %,

Normal Distribution X ~ N(u,0?) is p,
Standard Normal Distribution X ~ N(0,1) is 0.
Poisson Distribution X ~ Po()) is A.
Exponential Distribution X ~ exp(}) is 1.

Theorem 60 Linearity of Fxpectation

Statement:

For random variables X7, Xs, -+, X,,, we have
n n
E{sz} = ZE[XZ»].
i=1 i=1

Proof: We prove the case n = 2; the general case follows by induction. All summations below are
over the ranges of the corresponding variables.

]E[X+Y]:ZZ(i+j)P((X:i)m(Y:j))
=3 R((X =N =) + D iR((X =)n (Y =7)
=2 i P((X=0)n (Y =7) + D> P(X=9)n( =)

:ZiIP(X:i) + ZjIP(Y:j) — E[X] +E[Y].
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Definition 20 Indicator variable

Description:

An Indicator variable is a random variable that takes only 0 or 1 as value to indicate whether
a subject satisfy given condition or not, let X; be the indicator variable of z; € S, then

1, z; €8,
Xp=4 T
0, otherwise,

we also have a useful result which is
E[X;] =P(z; € 9),

and hence we can deduce that

i=1

Theorem 61 Union Bound

Statement:

For events Ay, Ao, -+, Ay, if

then there 3 a non-zero event such that none of 4; occur.

Proof: If 3 such event, then A; should cover up all the possibility that might occur which mean
contradiction. [

Theorem 62 Boole’s Inequality

Statement:
For events Ay, Ay, -+, Ay,

(()a) < S

Proof: Apply induction on n: The case n =1 is trivial, suppose it is true for n, then for n + 1, by
Inclusive-exclusive Principle,

(U a) = #(Ua) 2t () <2( (1) et <3 ria,

i=1 i=1
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|
Theorem 63 Bonferroni’s Inequality
Statement:
For events Ay, Ay, -+, Ay,
IP( N A,») >1-) P(4))
=1 i=1

Proof: Similarly apply induction, again we have a trivial base case and suppose n is true, then for
n + 1, we have

n+1 n n n

]P>< N Ai> = IP’( (4N An+1) = P( N A,;> +P(Aps1) — IP’( (AU A"H).

i=1 i=1 i=1 i=1

Now remains to prove that
P(Ansr) B () AU Anis ) 2 P(A0),
i=1
which is equivalent to
P[40 A ) = Pldri) < P() =1 - B(dui)
i=1

and is obviously true. |

Theorem 64 Lovdsz Local Lemma

Statement:

For events Aj, As,--- , A, such that they are independent to each other except at most d of
them, consider p = max{P(A4;)}, then if

epd <1

then there 3 a non-zero event such that none of 4; occur.
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2.4 Graph Theory
Definition 21 Graph

Description:

A graph is an ordered pair G = (V, E)) of multiset E with elements takes in V2, where V = V(G)
is called the vertex set of G while E = E(G) is called the edge set of G. We can simply
write edge {u, v} as uv.

A graph is called a empty graph if V = F = 2.

V2

U1 V = {Ul,’UQ,’Ug,U4}

E = {v1v3, 0103, 0104, U203, V404 }

V4

U3

Definition 22 Simple Graph

Description:

A simple graph is a graph G = (V, E) such that it has no loop (edge with same end like v4v4)
or multiple edges (two or more identical edges appear in a graph like vjv3) i.e

EC{uw|u,veV,u#v}.

otherwise it is called a multigraph.

Definition 23 Order of Graph

Description:

The order of graph is the number of vertices of the graph, denoted as
G| == [V(G)].

A graph with |G| € {0, 1} is called trivial graph.

Definition 24 Length of Graph

Description:
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The length of graph is is the number of edges of the graph, denoted as
1G]] == |E(G)I.

A graph with ||G|| = 0 is called a null graph.

Definition 25 Incident

Description:

A vertex v € V is said to be incident with an edge e € F if v € e. In that case v is also called
an end of e.

Definition 26 U-V edge

Description:

If U UV is a partition of the vertex set and u € U, v € V, then uwv is called a U-V edge and
the collection of all such edges is denoted

EUV)={weE|uel, veV}

/

/ \\ -~
/ \
| D\
I I !

U | | %

| I
\ \ /
\ / \_/
\ /

\\ ,

Definition 27 Adjacent

Description:

Two distinct vertices u,v € V are adjacent if u,v € F, in which case we write u ~ v; while
Two edges e, f € F are adjacent if e # f and e N f # &, i.e. they have a common end.

Definition 28 Neighborhood

Description:
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The neighborhood of a vertex v is the set of vertices that incident to v, denoted as
Nw):={ueV |u~uv}.
while the set of edges incident to v is also defined

Ew)={ec E|vee},

Definition 29 Complete Graph

Description:

A graph G = (V, E) is complete if every pair of distinct vertices is adjacent. The complete
graph on n vertices is denoted K.

Definition 30 Graph Isomorphism

Description:

Let G = (V,E) and G’ = (V', E’) be two graphs. They are isomorphic, written G = G, if
there exists a bijection
p:V — vV

such that for all u,v € V,

{u,o} e E <= {p(u),p(v)}€E"

Such a map ¢ is called an isomorphism.

U1 /

/

12

V4 U3 Uy Ué

Definition 31 Graph Invariant

Description:

A graph invariant is any function « defined on all graphs such that

G=2G = oG =0a(G)
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Definition 32 Subgraph and Supergraph

Description:

Let G = (V,FE) and G' = (V', E’) be graphs. If V/ C V and E’ C E, then G’ is a subgraph
of G and G is a supergraph of G’, denoted G’ C G.

Definition 33 Induced Subgraph

Description:

IfG'=(V',E')CG=(V,E) and
E'={weE|uveV'},
then G’ is the induced subgraph of G on V', denoted

G =G[V'].

Definition 34 Spanning Subgraph

Description:

A subgraph G’ = (V' E’) of G = (V, E) is spanning if V' = V.

Definition 35 Complement Graph

Description:

The complement G of a simple graph G = (V, E) is the graph on the same vertex-set V' whose
edge-set is -
E(G)=V?\E.

If G =G, G is called self-complementary.

Definition 36 Line Graph

Description:

The line graph G = (V, E), denoted as L(G) has vertex set E(G), and two vertices e, f € E(G)
are adjacent in L(G) whenever e ~ f in G.
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L(G)

v1 s V14
V1V2

\/

V4
V45

v
5 Vo Uy

Lemma 23

Statement:

Let K, be the complete graph whose edges are coloured with &k colours. Suppose every triangle
in K, is either monochromatic or rainbow (all three edges different). Then

n < k(k—1)+2.

Proof: Let |G| = n, and let the number of colours be k. If edged of all triangle either all same or all
different colour, WLOG let v incident to > 2 different colour edges and among F(v), colour ¢ appear
the most. Let vvy, ...,vvn be colour ¢, v' be colour d, then vy, ..., vy pairwise connected edges with

colour c; colour of all v'vy,...,v"vy pairwise different and also not ¢ or d, then k > N + 2, also since
d -1
colour ¢ appear the most, N > e]igv -0 3 =n<(k—1)>2 |

Definition 37 Degree of Vertex

Description:

The degree of a vertex v € V' is the number of edges incident with v, denoted
deg(v) = [B ()|

A vertex v € V with deg(v) = 0 is called an isolated vertex.

A vertex v € V with deg(v) = 1 is called a leaf.

A vertex v € V is called an even vertex if deg(v) is even, and an odd vertex if deg(v) is odd.
The minimum degree of G is denoted as

§(G) = min deg(v),

and the maximum degree of G is denoted as

A(G) = max deg(v).

The average degree of GG is denoted as

d(G) = % > deg(v).

veV
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Theorem 65 Erdds—Gallai Theorem

Statement:

A nonincreasing sequence of nonnegative integers d = (dy,...,d,) is the degree sequence of
n

some simple graph if and only if d; is even and for every 1 < k <n
ple grap y Yy
=il

n

k
> di < k(k—1) + > min{d;,k}.

i=k+1

Proof: (by S.A. Choudum)

Definition 38 k-Regular Graph

Description:

A graph G = (V, E) is called k-regular if deg(v) = k for every v € V.

Theorem 66 Friendship Theorem

Statement:

Let G be a finite simple graph such that any two vertices have exactly one common neighbor.
Then there exists a vertex adjacent to all other vertices.

Proof:
Suppose, for sake of contradiction, that no vertex is adjacent to every other.
We prove G is k-regular. Pick two non-adjacent vertices A and B. Let

N(A) ={a1,...,ax}, N(B)={b1,...,be},

so deg(A) = k, deg(B) = {. For each a;, its unique common neighbor with B cannot be A, so must
be some b;. If two distinct a;, a;; shared the same b;, then A and b; would have two common
neighbors, impossible. Hence k < ¢. By symmetry ¢ < k, so k = £. Thus deg(v) = k for all v € G.

Count ordered triples (A4; B,C) where A ~ B,C, and B ~ C. First way: choose A in n ways and
k
then two of its k neighbors, giving n<2) Second way: choose an edge {B,C} in (Z) ways, then its

kN _ (n
"o) T o)
whence n = k2 — k + 1.

Let A = (a;;) be the adjacency matrix of G. The condition “each pair has exactly one common
neighbor” reads

common neighbor A.
Equating gives

1 k - 1
A2 = _
11 k

Thus
det(\I =A%) = (A= (k+n—1)) (A — (k—1))".
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Hence A? has eigenvalues k +n — 1 = k? (simple) and k — 1 (multiplicity n — 1). It follows that the
eigenvalues of A are +k (simple) ,v/k — 1 (multiplicity a) and —vk — 1 (multiplicity b), where
a+b=mn—1. So tr(A) =0, the sum of all eigenvalues vanishes:

th+(a—b)VE—1=0,

gives k — 1 | k?, force k = 2, n = 3. Therefor G = K3, contradiction. |

Theorem 67 Fuler’s Handshaking Lemma

Statement:

For G = (V, E),
Z degv = 2|E]|.

veV

Proof: We count every edges exactly twice when we sum up all the degree of vertex since once from
each of its ends. |

Lemma 24

Statement:

For any graph G,

Proof:
By Pigeonhole Principle. |

Lemma 25

Statement:
In any graph G, the number of vertices of odd degree is even.

Proof:
By Euler’ s Handshaking Lemma, Z deg(v) = 2|E| is even. Split the sum into contributions

veV
from even-degree and odd-degree vertices:

Z deg(v) + Z deg(v)

veV veV
2|deg(v) 2fdeg(v)

is even. The first sum is even, so the second sum being even and hence must be a sum of an even
number of odd terms. Hence there are an even number of odd vertices. |
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Lemma 26

Statement:

For the complete graph K,, on n vertices,

ol = (5) =25

Proof:

Every edge of K,, corresponds uniquely to an unordered pair of distinct vertices. There are (g) such
n n(n—1

pairs, hence || K,|| = <2) = % [ |

Definition 39 Path and Cycle

Description:

r

A path P = vgv; - - - vg is a simple graph with
V(P) = {vo,v1,...,}, E(P) = {vis1v |1 <i <k},

where the vertices vy, ..., v; are pairwise distinct. The path of length £ is denoted as P.
If vg = v, then P is called a cycle. Equivalently, a cycle of length k is denoted Cj.

A subpath of P is any path of the form

(2) v, P =v; - v,
(3) UZ‘P’UJ‘ = V; " "Uj,
(4) U1PU2P1U3 = U1P1}2 U UQP/U?,.

Definition 40 Girth and Circumference of Graph

Description:

The girth of G, denoted g(G), is the minimum length of cycle in G while the circumference
of G is the maximum length of cycle in G.

Definition 41 Walk

Description:

A walk in G is a sequence
Vpe1v1€a ...ELVE

of vertices and edges such that each e; = {v;_1,v;}. Vertices and edges may repeat.
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Definition 42 Trail and Circuit

Description:

A trail ejes--- e is a walk with pairwise distinct e;, 1 < i < k. If e = ey, it is called a
circuit.

Definition 43 Chord of Cycle

Description:

[ A chord of a cycle C is an edge e ¢ E(C) joining two vertices of C'. ]

Definition 44 Distance Between Vertices

Description:

The distance between two vertices u, v, denoted d(u,v), is the length of a shortest u—wv path
in G.

Definition 45 FEccentricity, Diameter and Radius

Description:

The eccentricity of a vertex v, denoted £(v), is

e(v) = max d(v,w).

Moreover, The diameter of G is

diam(G) = max e(v).

and the radius of G is

rad(G) = min g(v).

Definition 46 Center of Graph

Description:

The center of G is the set of vertices realizing the radius:

C(G) ={v eV |e(v)=rad(G)}.

Lemma 27
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Statement:

Every graph G contains

« a path of length §(G), and

o if §(G) > 2, a cycle of length at least §(G) + 1.
Proof:
Let P = vgvy - - - v be a longest path in G. Then every neighbor of vy lies on P, so

k > deg(vi) > 0(G).
Thus P has length > 0(G). If §(G) > 2, pick the smallest index ¢ < k with v; ~ vg. Then
i < k—deg(vr) < k—94(G),

and the cycle
ViUjy1 -+ VgUg

has length
k—i+1 > k—(k-0(G))+1=6(G)+1.

Lemma 28

Statement:

9(G) < 2diam(G) + 1.

Proof:
Let C' C G be a shortest cycle, and pick two vertices u,v € C such thatde(u,v) > diam(G) + 1, but
then obviously

da(u,v) < diam(G) + 1 < de(u,v),

so replace the shortest u — v path in C' to the shortest u — v path in G we get a cycle shorter then C,
contradiction |

Lemma 29

Statement:

Let G be a graph with radius rad(G) < k and maximum degree A(G) < d. Then

|G| < 1+ kd".

Proof:
Choose a central vertex c, let
D, ={veV(G)|d(c,v) =1}
k
so V(G) = U D; and Dy = {c}. Since A(G) < d, we have
i=0

|Do| =1, |D1|<d, |D;|<(d—1)D;—1 (Vi>2),
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hence |D;| < d(d — 1), V0 <i<k.

Then
k k k—1 ,
Gl =|JDi| <D IDi| <14d> (d—1)" <1+kd(d—1)""" <1+ kd*.
=0 =0 =0

Definition 47 H-Path

Description:

Let H C G be a subgraph. A path P C G is called an H-path if P meet H exactly in its ends
and no internal vertex of P lies in H.

Definition 48 Tree and Forest

Description:

A graph with no cycle is called a tree. A forest is a graph whose every connected component
is a tree (equivalently, a disjoint union of trees).

Lemma 30

Statement:

If T is a tree with at least two vertices, then T has at least two leaves.

Proof:

Let P = vgv1 - - - v be a longest path in 7. Since T has no cycle, neither vy nor v can have degree
exceeding 1 (otherwise P could be extended), so deg(vg) = deg(vi) = 1. Thus there are at least two
leaves. |

Lemma 31

Statement:

Let T be a graph on n vertices. The following five statements are equivalent:
1. T is a tree.
2. For every pair u,v € T there is a unique u—wv path in 7'
3. T is connected but T\ e is disconnected for all e € T'.
4. T has no cycle and ||T|| =n — 1.

5. T is connected and ||T|| =n — 1.
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Proof:
We sketch the standard cycle of implications:

(1) = (2): If T is a tree then it is connected and contains no cycle. Existence of at least one u—v
path follows from connectedness; uniqueness holds because two distinct u—wv paths would form a
cycle.

(2) = (3): If there were an edge e whose deletion did not disconnect 7', then the two ends of e would
still be joined by a path not using e, contradicting uniqueness.

(3) = (4): If T is connected and every edge is a bridge, then removing any edge reduces the number
of connected components by one. Starting from 7" and removing edges one by one until no edges
remain, one sees there must have been exactly n — 1 edges to achieve n isolated vertices. Absence of
any cycle also follows since a cycle edge cannot be a bridge.

(4) = (5): Trivial, since (4) already asserts no cycle and |E| = n — 1, which in particular implies T is
connected (a disconnected acyclic graph on n vertices with n — 1 edges would have too many edges in
some component).

(5) = (1): A connected graph with n vertices and n — 1 edges cannot contain a cycle (removing an
edge from a cycle would still leave the graph connected, contradicting the edge—count). |

Definition 49 Connected Graph

Description:

An undirected graph G is connected if for every pair of vertices u,v € V(G) there exists a
walk from u to v.

A connected component of an undirected graph G is a connected subgraph that is not part
of any larger connected subgraph.

Definition 50 Clique

Description:

A clique in a graph G = (V, E) is a vertex set C' C V such that every two distinct vertices in
C are adjacent (i.e. induce a complete subgraph). The clique number of G, denoted w(G), is
the cardinality of a largest clique in G.

Theorem 68 Caro—Wei Theorem

Statement:

For any graph G,

1
al(G) > Z w.

veG

Proof:
Assigned an order to all v € G randomly and uniformly, consider
I = {v € G | v appears before all u € N(v)}, then I is an independent set. Note that for any v € G,

1

P(UGI) = 71+deg,u7
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let X; =1I(v; € I), then
1
E[1] = ZP(Xz‘) = Z T+ dego’

veG
[ |
Definition 51 Independent Set
Description:
An independent set in G = (V, E) is a vertex set I C V such that no two distinct vertices
in I are adjacent. The independence number of G, denoted a(G), is the cardinality of a
largest independent set in G.
Lemma 32
Statement:
For any graph G on n vertices,
w@) > Y —
- veEG e deg( )
Proof: -
Apply the Caro—Wei to the complement G:
_ 1 1
a(G) > —_— = _
1; 1 4 degg(v) 1; n — degq (v)
. Since a(G) = w(Q), the result follows. |

Theorem 69 Ramsey’ s Theorem

Statement:

Every graph G on |V(G)| > 6 vertices satisfies

max{w(G), a(G)}

%
o

Proof:
Let G be any graph on n > 6 vertices, and pick a vertex v. Since v has n — 1 > 5 other vertices, by
the pigeonhole principle either

IN(w)| >3 or |V(G)\ (N(v)u{v})|=>3.

— If [IN(v)| > 3, let z,y,z € N(v). In the subgraph induced by {z,y, z}, either two are adjacent
(giving a clique of size 3 together with v), or none are adjacent (giving an independent set of size 3).
— If [V(G) \ (N(v) U{v})| > 3, pick three vertices non-adjacent to v. In that set again either two are
non-adjacent (yielding an independent set of size 3 together with v), or two are adjacent (yielding a
clique of size 3).

In either case we find a clique or independent set of size at least 3, completing the proof. |
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Definition 52 Directed Graph

Description:

A directed graph is a graph in which each edge is assigned an orientation, called a directed
edge. If e is a directed edge in a digraph, then init(e) denotes its initial vertex and ter(e) its
terminal vertex and if init(e) = v and ter(e) = v, we write u — v.

Definition 53 In-Degree and Out-Degree

Description:

The in-degree of a vertex v in a digraph, denoted deg™ (v), is the number of edges directed
into v, while the out-degree of a vertex v in a digraph, denoted deg™ (v), is the number of
edges directed out of v.

Lemma 33

Statement:

In any directed graph,

S degt(v) = 3 deg(v) = |,

veV veV
Proof:
Each directed edge contributes exactly 1 to the out-degree of its tail and exactly 1 to the in-degree of
its head; summing over all vertices counts each edge once in each sum. |

Definition 54 Tournament

Description:

A tournament K, is an orientation of the complete graph on n vertices: for every pair of
distinct vertices u, v, exactly one of the directed edges u — v or v — u is present.

Lemma 34

Statement:

In every tournament K, there exists a vertex v from which every other vertex can be reached
by a directed path of length at most 2.

Proof:

Let v; be the vertex has the greatest out-degree. Suppose there exists no such vertex, then

Jvy ¢ NT(vy) and for all w € NT(vq), v — u and vy — vy, thus [N (vg)| > |[NT(v1)], contradiction.
|
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Lemma 35

Statement:

A tournament K, contains a directed triangle if and only if there exist two vertices u, w with
deg™ (u) = deg™ (w).

Proof:
Sufficiency: WLOG let v — w — vy, ..., v, k = deg™ (w), then 3 v; — v otherwise
deg™ (v) > k + 1> deg™ (w), contradiction

O
Necessity: If V v, w, deg™ (v) # deg™ (w), we prove by induction. Base case is trivial, suppose the
statement true for some n, consider K11, WLOG let deg™ (v;) =i + 1, by inductive hypotesis,
K11\ vpg1 don’t have a directed triangle, so K, 11 don’t have either. [ |

Lemma 36

Statement:

Every tournament K, has a Hamiltonian directed path of length n — 1.

Definition 55 k-partite Graph

Description:

k
A k-partite graph is a graph G = (l_l Vi, E | such that no edge has both ends in the same
i=1
V;. In particular, a bipartite graph is a graph G = (X UY, E), which is a 2-partite graph.

Definition 56 Complete k-partite Graph

Description:

The complete k-partite graph, denoted as K, .nx is defined as

1,M12,..

Kn\{elee E(V, Vi), i € [K]},

i.e. connect everything that can connect across parts.

Definition 57 Turdin Graph

Description:

The Turan graph T'(n, k) is defined as the complete k-partite graph K, n,, . n,, where ny =
ng=---=np,=m-+1,n.41=---=np=mforn=mk+r with 0 <r <m.




2.4. GRAPH THEORY 101

Lemma 37
Statement:

Let T'(n, k) be the Turdn graph, and set m = [%J Then

e i)l = ("5") + e-o (™).

1
In particular, for £ < 7 one has the succinct expression HT(n, k‘))|| = Kl — 7) n—J

Theorem 70 Turan’ s Theorem
Statement:
Let G be a graph on n vertices and fix k > 1. If G contains no (k + 1)-clique, then

1G]l < [|T(n, K|,

with equality if and only if G = T'(n, k).
1 2
weaker version: Let G be an n-vertex graph. If ||G|| > ||T(n,k))|| = Kl — E)%J’ then G

contains a clique of size at least k + 1.

Theorem 71 Mantel’ s Theorem

Statement:

If G is an n-vertex graph with no triangle, then

2

el < | %]

Proof:
Immediate from Turdn’ s Theorem by setting k = 2. |

Lemma 38

Statement:

Let G be an n-vertex graph with e = ||G||. Then the number of triangles in G is at least

Proof:
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For each edge uwv, there are deg(u) + deg(v) — n common neighbors w forming a triangle uvw.
Summing over all e edges counts each triangle three times, giving

3T > Z (deg(u) + deg(v) —n) = Z(deg(v))2 — en.

uwveE v

By Cauchy—Schwarz, >°, (deg(v))? > (3, deg(v))2 = %, hence T > 1(4e?/n — en). [

1
n
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2.5 Linear Algebra in Combinatorics

Definition 58 Adjacency Matriz

Description:

Let G = (V, E) be a simple graph with |V| = n and fix an ordering V' = {vy,vq,...,v,}. The
adjacency matrix of G is the n X n matrix

1, if Vi ~ Uy,

(@ij)i<ij<n,  Qij = {

0, otherwise.
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Chapter 3

Number Theory

Remark: all alphabet in Number Theory is integer except where otherwise stated.
3.1 Divisibility

Theorem 72 Properties of Divisibility

Statement:
The divisibility relation has the following properties:
1. (reflezivity) n | n. (0| 0 is valid)
2. (transitivity) a | b, blc = a]ec.
3. 1| n and n | 0 both true.

4. alb & \a|‘|b|

5. For 1 < i <n and any ¢, if a | b;, then a ’ Zcibi.
i=1

6.a|lne — ‘ n. (divisor appear in pairs except for perfect square)
a

Proof:
Properties 1,2,3 and 4 can directly obtain from definition. For property 5, let b; = ak; then

=1 1=1

i=1

For property 6, let n = ka then L | n.
a

Theorem 73 Fuclid’s Division Lemma

Statement:

For any a,b,, there 3! k,r such that 0 < r < b and

a = bk +r.

107
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Proof:

Uniqueness:

Suppose that we have two presentations a = bk + r = bk’ + ¢/, then |b| > |r — /| = [(K' — k)| - |b] > |b]
lead to a contradiction.

O
Ezistence:
Take k = [ %] then
O=a—0b-—+ §afb{fJ :r<afb(ffl) =b
|

Theorem 74 Gauss’ Divisibility Lemma
Statement:

For coprime a, b,

albn = a|n.

Proof: In Z/aZ,bn =0 = n=b"'bn = 0. [
Theorem 75 FEuclid’s Lemma
Statement:

For prime p,

plab = pla or p|b.

Proof: by Gauss’ Lemma. n
Lemma 39
Statement:

For any positive integer k, let d be positive divisor of k, then:

1. a—b|a*— bk

2. a% — b | a¥ — V.

3. 124k, a+b|ak+0k

412450 ad + b7 | ok + b".
Proof: It’s obvious by the ™ + y™ identities. |

Lemma 40
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Statement:

For m,n,a € Z~g,a > 2,
nim < a"—1|ad" -1

Proof: Let m = kn+r, 0 <r <n, then
(@™ —=1)—(a" —1)=a™ —a" =a" —1=( Zabkll

which means ™ — 1| a™ —1<a"—1]a" —1< r=0since n >r.

Lemma 41

Statement:

If a | b, then either b =0 or |a| < |b|.

Proof: Consider b# 0, a | b= |a| | |b], let [b| = k|a|, then k > 1 = |b] = k|a| > |a|.

Lemma 42

Statement:

Let f € Z[z], then
a—=>b| f(a) = f(b).

Proof: Let f(x chx then a — b ZCZ a—"b) = f(a)— f(b).
=1 i=1

Lemma 43

Statement:

Let f € Z[z], then there exists infinitely many b such that f(a) | f(b).

Proof: Take b = a + k|f(a)|, then by lemma , f(a) | k|f(a)]=b—a| f(b) — f(a) which means

F(a) | f(b) for Vk € Z.

Lemma 44

Statement:

Let 2tn > 1, then
"2 | g2 — 1.

109
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Proof: Observed that )
a® —1=(a—1)(a+1) [[* +1),
i=2
2041

since n is odd, then (a —1)(a+1) = a2 — 1 =g 0, and we also have a are even then we are done. B
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3.2 Congruence

Theorem 76 Properties of Congruence

Statement:

In mod n, the congruence relation has the following properties:
1. (reflezivity) a = a.

2. (symmetry) a = b < b = a.

3. (transitivity) If a = b and b = ¢, then a = c.

4. Ifa=¢c,b=d, then a+b=c=*dand ac = cd.

5. If a = b, then ac = be (mod n) and ac = be (mod nc) both true.

n
. Ifac= h = _—
6. If ac = be (mod n), then a = b (mod T c)>

7. If a=b (mod n), and d | n then a = b (mod d).

Proof: Properties 1,2 are obvious. For 3, n|a—b,b—c=n|a—b+b—c=a— c. For Property 4,
the former is by definition and the latter is by Property 5 of divisibility. |

Theorem 77 Fuler’s Theorem

Statement:

For coprime a,n,
a?™ =1 (mod n).

Proof: Note that a(Z/nZ)* is a reduce residue class modulo n . Hence

d@ DI s= [ s(modn) & a®™ =1 (modn).

s€(Z/nL)* s€(Z/nZL)*

|

Lemma 45

Statement:

Let f € Z[z], then
a=0b(modn) < f(a) = f(b) (mod n).
Proof: Let f(z) = Zcixi, then f(a) — f(b) = Zci(a —b)' =0 (mod a — b). [
i=1 i=1
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Theorem 78 Fermat’s Little Theorem
Statement:

For prime p 1 a,
a?~! =1 (mod p).

Proof: By Euler’ s Theorem.

Theorem 79 Wilson’s Theorem
Statement:

p is prime if and only if
(p—1)!'= -1 (mod p).

Proof:
Necessity:
The case p = 2 is trivial, now discuss odd prime p. Consider

p—1

Fp > fla)=a?"' =1 [z =),

i=1

and we substitute any a € [p — 1] and apply Fermat’s Little Theorem give
f(a) =a?' —1 =0 (mod p),

which means f has p — 1 roots but deg f < p — 2, by Lagrange’s Theorem (see Chapter of
Polynomial) f(z) =0 (mod p) for Y2 mod p then substitute x = 0 mod p yields

1= p-1)=(p—1)! (mod p).

Sufficiency:
Suppose p is composite, let prime ¢ | p then

(p—1!'=-1(modp)=—-1=(p—1)! =0 (mod q).

which is a contradiction.

Theorem 80 Chinese Remainder Theorem

Statement:

113
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Form 1:
Let mqy, mao, ..., m,, be pairwise coprime integer, then for any ai,as, ..., a,, the system

x = a1 (mod my),

x = as (mod ma),

x = a, (mod my,).

has exactly one solution which is
T = ZaiMiMfl (mod M),
i=1

where M =[], m; and M; = 2L

i

Form 2:

n
Let mq,mao, ..., m,, be pairwise coprime integer and M = H m;, then the ring
i=1

Z/MZ = (Z)miZ) x (Z/msZ) % .. x (L)mnT).

Proof:
Only need to prove Form 1 because it implies Form 2.

Uniqueness:
Suppose there are two distinct solution for z, called them k,¢ mod M, then m; | k — ¢ for V1 <i < mn.
Since m; pairwise coprime, then M | k — t too, which is a contradiction.

O
Ezistence: Since ged(M;, m;) = 1, Then there exists N; = M; ' mod m;, take
Tr = Z aiMiNi (InOd M),
i=1
then we have
r=a;M;N; = a;(1 —m;n;) =a; (mod m;), forv1<j<n
where the existence of such n; is by Bézout’s Lemma. |

Theorem 81 Freshman’s Dream
Statement:
For any a,b, prime p and 7 > 0,
(a+ b)pi =a? + " (mod p).

Proof:
Apply induction on i: when i = 1, by lemma

p—1
(a+bP =d”+0° + Z (i)akb”_k = aP + V¥ (mod p).
k=1
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Suppose Freshman’s Dream holds true for some i, then for ¢ 4 1

i+1

(a + b)pi+1 =[(a+ b)p]" = (api + b”i)p =o' 0 (mod p).

Theorem 82 Wolstenholme’s Theorem

Statement:

Form 1: For prime p > 5,

p—1 1
2= 0 (mod p)
=1
Form 2: For prime p > 5,
p—1 1
;= 0 (mod p?)

Form 3: For prime p > 5,

Proof:

Proof of Form 2

Method 1: (by algebraic method)
Compute

p—1 p—1 p—1 —
D I N N e LI

Method 2: (by Taylor Series)
Consider polynomial

f(z) = H(m —i)=aP fagaP? fagaP P 4 L ap_0z + (p— 1)),

for some ay,as, ...,a,—2. We use the fact 2P~ — 1 = f(z) (mod p) that have been proven at the proof
of Wilson Theorem, cancel out the equal terms from both side give

a12?P 2+ agaP 3 4+ .+ ap—22 =0 (mod p)

for any z. By Lagrange’s Theorem, p | a;, V1 < j < p — 2. Noticed that f(0) = (n —1)! = f(p),

we compute
p—1
> 114 170) =a,s,
i=1 j#i

then consider Taylor Series of f(p),
[ee] ; (oo} ;
F90) ; FO0) f" f(”
0+ 5 L0 0= 500 i L0 5 £00
i=0 i=1

Since p | a,—3 = f”(0), then p? | @p which means

P f(0) & p* | (p—1) ZHJ*Z** (mod p?).

i=1 j#i i=1
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Proof of Form 1
Directly obtain from Method 1 of proof of Form 2.

Lemma 46

Statement:

Let n = arag_1...ag. For 1 <1 < k, denoted

S(n):Zai, 5022% and 51220“,

2l 2ti

then
(a) S(n) =n (mod 9).
(b) So —S1 =n (mod 11).

Proof:
(a)
k k
n= Zailoi = Zai = S(n) (mod 9).
i=0

i=0

(b)
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3.3 GCD and LCM

Theorem 83 Properties of GCD

Statement:

GCD has the following properties:

1. (commutativity) ged(a,b) = ged(b, a).

2. (associativity) ged(aq, asg, ..., an) = ged(ged(ar, ag, ..., ag), Qk41, ..., an) for some 1 < k < mn.
3. (multiplicity) For coprime a,b, ged(ab, ¢) = ged(a, ¢)ged(b, ¢).

4. (distributivity over lem) ged(a,lem(b, ¢)) = lem(ged(a, ), ged(a, ¢)).

5. nl|a,ben|ged(a,bd).

6. ged(na)1<i<n = 0| ged(a;)1<i<n.

7. ged(a,n) = ged(b,n) = 1 < ged(ab,n) =1

8. ged(a,b) =1 < ged(a™, ") = 1.

©o

. ged(a,b) = d = ged (g, g) =1.

10. If ab = n* with ged(a, b) = 1, then a = ged(a,n)¥, b = ged(b, n)*.
11. ged(a™, b™) = ged(a, b)™.

Proof: Property 1,5 is by definition. For 2,3,6,7,8,9,10 and 11, think ged(a;) as the intersection of
the prime divisor of a; then can easily proved. For 4, let p be any prime divisor of a,b or ¢, and let
Sas Sb, Sc be its exponent in each of those numbers. Let z = lem(a, ged(b, ¢)), then the exponent of p
in z is max{s,, min{s, s.}} = min{max{sg, sp }, max{s,, s.}}. Hence follows that lem is distributive
over ged.

|

Lemma 47

Statement:

For a,b,m,n > 0, if ged(a,b) = 1, then

gcd(am _ bmvan _ bn) _ agcd(m,n) . bgcd(m,n)

Proof
Replacing a,b, m,n by agcd(m.n) peed(mn) gcd(’fn ok gcd(’fn ) respectively, we may assume
ged(m,n) = 1. Since @ = b (mod a — b), it follows that a* = b* (mod a — b) for all £ > 1. Hence

a—b|ged(a™ —b™, a™ —b"). Conversely, let

d:=ged(a™ — 0", a” —0").

Then
a™=b" (modd) and a"=b" (mod d),
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so for all k,1 > 1 a™ = b™* (mod d),a™ = b™ (mod d). Since ged(m,n) = 1, Bézout’ s lemma
yields integers k,1 > 1 with km = In + 1. Thus

a"tt =gk = pmF = it = pe™ (mod d),

which gives d | a™(a — b). But ged(a,d) = 1 (since ged(a,b) = 1 and d | a™ — b™), so by Gauss’
lemma, d | a — b. This completes the proof. |

Lemma 48

Statement:

Let for any k,
ged(a,b) = ged(a, b+ ka).

Proof:
Set d := ged(a,b). Since d | a,b, it follows that d | (b + ka). Hence d is a common divisor of a and
b+ ka, so

d|ged(a,b+ka).

Conversely, let d’ = ged(a,b+ ka). Then d | a and d’ | (b + ka), which implies d’' | b. Thus d’ is a
common divisor of a and b, giving
d' | ged(a, b).

Since ged(a,b) and ged(a, b+ k a) are nonnegative integers dividing each other, they must be equal. B

Theorem 84 FEuclidean Algorithm

Statement:

Let a > b > 0,
ro=a, r1=0>o,

and for as long as r; # 0, let ;41 be the remainder when r;_; is divided by r;. Then there
exists a smallest n > 1 such that
=0,

Moreover,
rn—1 = ged(a, b).

Proof: First, by construction each remainder satisfies 0 < 7,41 < r,,. Since the sequence {r,}
consists of nonnegative integers strictly decreasing whenever r, > 0, it must terminate at some first
index N with ry = 0.
Next, for each n > 1, the division

Tn—1 = qnTn + Tnt1

shows that r,,11 = r,—1 (mod r,). Hence every common divisor of r,_1, 7, also divides 7,41, and by
induction every common divisor of a,b divides each subsequent r,,. In particular, it divides rn_1.
On the other hand, since ry = 0, we have ry_1 | 7ny—2, and then by “lifting back’’ through the
divisions one sees r_1 divides ry_o,7N_3,...,79 = a and r; = b. Thus ry_; is a common divisor of
a and b. Combining these two facts, ry_1 is the greatest common divisor of a and b. |
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Theorem 85 Properties of LCM

Statement:

LCM has the following properties:

1. (commutativity) lem(a, b) = lem(d, a).

2. (associativity) lem(ay, ag, ..., an) = lem(lem(aq, ag, ..., ax), Ag41, -.., apn) for some 1 < k < n.
3. (distributivity over ged) lem(a, ged(b, ¢)) = ged(lem(a, b), lem(a, ¢))

4. a,b|n < lem(a,b) | n.

5. lem(na, nb) = |n|lcm(a, b).

Proof:

Property 1 is by definition. For 2,4 and 5, think lem(a;) as the union of prime divisor of a;. For 3, let
p be any prime divisor of a,b or ¢, and let s, sp, s be its exponent in each of those numbers. Let

x = ged(a, lem(b, ¢)), then the exponent of p in x is

min{s,, max{sy, s.}} = max{min{s,, sy}, min{s,, s.}}. Hence follows that gcd is distributive over
lem.

|
Lemma 49
Statement:
For any integers a, b,
ged(a, b) lem(a, b) = }ab‘.
Proof:
Write the prime factorizations
a=][[r> bv=]]r".
P P
where the product runs over all primes p and e, f, > 0. Then
ged(a,b) = Hpmin(e"’ff’), lem(a, b) = Hpmax(ef”fp).
P P
Therefore
ged(a, b) lem(a, b) = Hpmin(ewprmaX(eme = Hpep‘*‘fp = |ab|.
P P
|

Theorem 86 Bézout’s Lemma

Statement:
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For any ai,as,--- ,a, that not all zero, 3 by, bs, - - , b, such that

n
Zaibi = ged(ai, az, -+ ,an).

i=1

Proof:
n
Let S be the set of all linear combinations of Z a;r;, with z; € Zg. Note a? +---+a2 € Sis a

i=1
positive integer, so by the Well-ordering principle S has a least positive element
d=min{s € S: s> 0}.

Since d € S, we can write
d=ayzy+ -+ anTy,

showing d is a multiple of any common divisor of the a;. Now take any s € S and divide by d:
s=qd+r, 0<r<d.

Then r = s — gd € S, so minimality of d forces r = 0. Hence d | s, and in particular d | a; for each i.
Therefore d = ged(ay, ..., an). [ |

Theorem 87 Erdis-Szekeres Theorem

Statement:
For 1 < k,m<n,

w(2)(2)

Proof: Suppose in contrary, noted that

(Z) ’ (Z) B k!(nni DIN m!(kki m)l m!(nni m) (k —(Tr;)_!(?i DI (Z) ' (: . Z)

Then (n) ’ (n) . <k> and by Gauss’ Lemma we have (n) ‘ <k>, which is contradict to
m k m m m

n > k. [ |
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3.4 Diophantine Equation

Theorem 88 Fermat Last Theorem

Statement:

For n > 3, the only solution over Q3 for

is (0,0,0).
Proof: Andrew Wiles’ s original paper:
Modular elliptic curves and Fermat’ s Last Theorem |

Theorem 89 FEuler’ s Four-Square Identity

Statement:

For a,b,c,d,w,x,y, z € C,

(> + b+ +d%) (w?+ 22 +y*> +22) = (aw+ bz + cy + d2)?

+ (az — bw + cz — dy)?
+ (ay — bz — cw + dx)?
+ (az + by — cx — dw)?.

Proof: One can just expand both sides to prove the identity, but here is the derivation using
quaternions (only applicable for a, b, ¢, d, w, z,y,z € R):
Consider p,q € H s.t

p=a+bi+cj+dk, and q=w+zi+yj+ zk,

where
P=42=k’=-1, ij=k, ji=—k, jk=1i, kj=—i, ki=j, ik=—j,

we expand and simplify:

pg=(a+bi+cj+dk)(w+zi+yj+zk)
—aw+azri+ayj+azk—+bwi+bri’+byij + bzik
+ewj+cxji+ceyj’ +czjk+dwk + dzr ki + dy kj + dz k*
= (aw —br — cy — dz) + (ax + bw + cz — dy) i + (ay — bz + cw + dx) j + (az + by — cx + dw) k.

Hence,

Ipq| = /(aw — bz — cy — dz)2 + (azx + bw + ¢z — dy)? + (ay — bz + cw + dx)? + (az + by — cx + dw)2.

Since |pg| = |p| |q|, square both sides and adjust the sign of each term, we will obtain the identity. W


https://jontallen.ece.illinois.edu/uploads/537.F18/Papers/Public/Wiles-Fermat.95.pdf
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Theorem 90 Brahmagupta—Fibonacci Identity

Statement:

For a,b,c,d € C,
(a®> + ) (* + d*) = (ac—bd)? + (ad + bc)?.

Proof:
For a, b, c,d € R, consider complex numbers.

z=a+bi, w=c+di,

then
Norm(zw) = Norm((ac — bd) + (ad + be)i) = (ac — bd)? + (ad + be)?,

and
Norm(z) = a? + b*, Norm(w) = ¢ + d*.

By the multiplicity of the complex norm, we have
(ac — bd)? + (ad + bc)* = (a® + b?) (¢ + d?),

as claimed. (Just expand both side to easily prove the case where a, b, c,d € C.) |

Theorem 91 Sophie Germain’ s Identity

Statement:

For a,b € C,
a* + 4b* = (a* + 2ab + 2b?) (a* — 2ab + 2b%).

Proof:

Observe that
a* +4b* = a* + 4a%V* + 4b* — 4a%V* = (a® + 2b%)? — (2ab)*.

By the difference of squares,
(a® +2b%)* — (2ab)* = (a® + 2b° — 2ab) (a® + 2b° + 2ab),

which is exactly the stated factorization. |

Theorem 92 Candido’ s Identity

Statement:

Let x,y € C, then
B+ + @ +)?)? = 26 +v* + (z+)Y).

Proof: Omitted. n

Theorem 93 Simon’ s Favorite Factoring Trick
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Statement:

For any x,y € R and constants k,l € R, the Diophantine equation
xy+kr+ly=n

is equivalent to
(x+1)(k+a)=n+kl

Furthermore, if zy has a coefficient:
sxy+ kr+ly=n
Multiply both side by s and the equation can be write as

(sx +1)(sy+ k) = sn+ kl.

Proof: Just expand. n
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3.5 Arithmetic Function
Definition 59 Fuler’s Totient Function

Description:

Euler’s Totient Function counts the integers between 1 to n that are that coprime to n

(inclusive):
o(n) = Z 1.

1<i<n
ged(i,n)=1

\. J

Let n = Hle p:i®', we have formula of o(n):

and specifically let p be prime then

Definition 60 Divisor Function

Description:

e N

For z € C, the Division Function is defined as
o.(n) = Z dz,
d|n

specifically we have

oo(n) :==7(n) => 1,

d|n

is the number of divisor function and

o1(n) :=0oc(n) = Z d,
d|

. .. . k i
is the sum of divisor function, when n = [[,_; p;* , we have formula

k piz(ai+1)+1

7l = pi¥ —1

b

=

and

Definition 61 Prime Omega Functions

Description:
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Prime Omega Functions w(n) and Q(n) counts the number of distinct prime divisor and the
total number of prime divisor of n respectively, again if n = Hle p; %, then

Definition 62 Liouville Function

Description:

Liouville Function gives a value of 41 if n is the product of an even number of primes, and

gives —1 if otherwise:
Am) = (~1)2.

Definition 63 Mdbius Function

Description:

Called a number square-free if it doesn’t divisible by any perfect square greater than 1, then
we can defined M6bius Function:

1 ,n=1;
p(n) == (=1)*™  n square-free;
0 ,n isn’t square-free.

or more neatly,

\. J

we also can immediately deduce that

2

p(n)? =1I(n is square-free).

Definition 64 Von Mangoldt Function

Description:

The Von Mangoldt Function is defined as

log p ,3 prime pand k> 1s.tn=p~
A(n) =

~]o , otherwise.
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3.6 Multiplicative Number Theory

Definition 65 Indicator Function

Description:

NUMBER THEORY

For a statement P,

I(P) = 1 ,Pis tl"l'le;
0 ,otherwise.

Definition 66 Constant One Function

Description:

It is defined for convenience
1(n) =1, VneC.

Definition 67 Identity Function

Description:

It just simply defined as
id(n) :==n,¥n € C.

Definition 68 Kronecker Delta Function

Description:

A two variables function, is defined by

6i’j o= ]I(’L = ]),

In order to make the Dirichlet Convolution part more convenient later, we denote 61 ,, = 6(n).

Definition 69 Multiplicative Function

Description:

A Multiplcative Function is an arithmetic function that satisfy

f(mn) = f(m)f(n), Va,bs.tged(a,b) =1,

below are some examples: For V coprime m,n,
Greatest Common Divisor, ged(mn, k) =gcd(m, k)ged(n, k) if fix k,
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Euler Totient Function, p(mn) = p(m)e(n),
Moébius Function, p(mn) = p(m)u(n),
Divisor Function, o;(mn) = oi(m)og(n).

Definition 70 Completely Multiplicative Function

Description:

131

A function is called completely multiplicative iff

fimn) = f(m)f(n), Vn,m e domf,

below are some examples:

Kronecker Delta Function, 0,,n.1 = Om, k0n k,
Constant One Function, 1(mn) = 1(m)1(n),
Identity Function, id(mn)=id(m)id(n),

Jacobi’s Symbol (and hence Legendre’s Symbol) (%) = (£)(2) = (2)er ...

(multiplicative in two ways), "
Expected Value, E[XY| = E[X]E[Y]),

Determinant, det(AB) =detA-detB,

Power Function, (mn)k = m* . n*,

Sign Function, sgn(mn) =sgn(m)-sgn(n),

Norm, Norm(wz) =Norm(w)Norm(m),

Complex Conjugate, wzr = wz,

Liouville Function, A(mn) = A(m)A(n).

Definition 71 Dirichlet Convolution

Description:

b :
e

For two arithmetic function f, g, the Dirichlet Convolution of them is defined by

(Fx9)m) =" F(dg(5).
d|n

There are some properties of *:

1. (Commutativity) fxg=g=* f,

2. (Associativity) (f xg) *h = f* (g h),

3. (Identity) f+6=f,

4. (Distributivity over addition) f* (gxh) = fxg+ f*h.

5. Dirichlet Convolution of two multiplicative function is also multiplicative.

Theorem 94 Mobius Inversion

Statement:
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Let f, g be two arithmetic function, then for Vn € Z~,
Form 1:

g=f*1 & f=gx*p

we also have the product version,

Form 2:
) = [ 9(d) < gn) = [] F(*D.
d|n

d|n

Proof:
Proof of Form 1
Suppose g = f * 1. Convolving both sides with p gives

grp = (fx)sp = fx(lxp) = fx6 = f.
Conversely, if f = g * u, convolving with 1 yields

frl = (gxp)xl = gx(uxl) = gxd = g,
sog=fx1.

Proof of Form 2
Assume f(n) = H g(d). Taking natural logarithms gives the additive relation
d|n

In f(n) = Zlng(d).
d|n

By the additive Mobius inversion just proved,

Ing(n) =" n(%) n f(d).

d|n

Exponentiating both sides yields

g(n) = exp (3 pln/d)In f(d)) = T £y,

d|n d|n

The converse follows by the same argument applied to the inverse relation. |

Definition 72 Mébius Pair

Description:

If f and g are two arithmetic function satisfying condition f = g * 1, then we call the order
pair (f,g) a Mobius Pair, here are some examples: (4, 1), (7,1), (o,id), (1,9) and (id, ).

Definition 73 Popovici Function

Description
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A generalized M6bius Function to be the k-fold Dirichlet Convolution of itself:

[ = JUk [L% - % L.

It has a nice property, which is

for prime p and a > 0.

Lemma 50

Statement:
For n > 0,
NE
Z (1) {7J =-n(n+1)
i>1
Proof:
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3.7 Primes
Theorem 95 Fuclid’s Theorem

Statement:
There exists infinitely many primes.
Proof: Suppose, to the contrary, that there are only finitely many primes, say pi,p2,-..,Dk-

Consider the integer
N =pip2---px+ 1

Since N > 1, it must have at least one prime divisor p. But p cannot be any of py, ..., pg, for each of
those divides p; - - - pr and hence leaves remainder 1 when dividing N. This contradiction shows there
is no finite list of all primes. |

Theorem 96 Fundamental Theorem of Arithmetic

Statement:

Every n > 1 can be represented in exactly one way as a product of prime powers

k
n= Hpiaiv
i=1

where p; < pp < --- < pj are primes and a; = vp, (n).

Proof:
Ezistence:
We prove by strong induction on n > 2 that n is a product of primes. Clearly 2 is prime. Assume
every integer 2 < k < n factors as a product of primes. If n itself is prime, we are done. Otherwise
write n = ab with integers 1 < a < b < n. By the induction hypothesis both a and b factor into
primes, say

a=pip2---pj, b=qq2 - q.

Hence n =ab=pip2---pj q1q2- - qx is a product of primes.

Uniqueness:
Suppose, to the contrary, there is an integer n > 1 admitting two distinct prime factorizations:

n=pip2---pPj =4q1492 gk,

with all p;, ¢; prime and the two multisets {p;} # {¢;}. Choose n minimal with this property. Then
p1 divides ¢1g2 - - - gk, so by Euclid’ s lemma p; divides some ¢;. Since p; and g; are prime, p; = ¢;.
Canceling this common factor from both sides yields a smaller integer

n/p1r=p2---Pj =q1- - ¢i—1Gi+1 - - - @ With two distinct prime factorizations, contradicting the
minimality of n. Thus the prime factorization must be unique. |
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Theorem 97 Dirichlet’s Theorem

Statement:

Given any coprime a, b, there exists infinitely many ak + b type primes.

Proof: See Wang Zi Jian’s proof:
https://math.uchicago.edu/~may/REU2017/REUPapers/WangZijian. pdf. |

Theorem 98 Green-Tao Theorem

Statement:

For n > 3, 3 an arithmetic progression with n terms, and all of them are primes.

Proof: Check out https://math.mit.edu/~fox/paper-green-tao.pdf. |

Theorem 99 Schur’s Theorem

Statement:

Let S be the set of all values of the non-constant polynomial P € Z[z], then there exists
infinitely many primes divide some element of S.

Proof: If P(0) = 0 we are done, otherwise let S = {P(n) # 0: n € Z}. We shall show there are
infinitely many primes dividing some element of S. Set

P(z P(0))
A= TRy
Since P € Z[z] and P(0) # 0, we see g € Z[z] and ¢g(0) = 1. Now for any positive integer n, consider

n!
oy - PO

Because ged (n!, g(n!)) = 1, each prime factor of g(n!) is strictly larger than n. As n — oo, this
produces infinitely many distinct primes dividing various values g(n!), and therefore also dividing the
corresponding values P(n!P(0)) € S.

In either case, S must be divisible by infinitely many primes. B |


https://math.uchicago.edu/~may/REU2017/REUPapers/WangZijian.pdf
https://math.mit.edu/~fox/paper-green-tao.pdf
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Theorem 100 Kobayashi’s Theorem

Statement:

Let .# be an infinite set of positive integers such that the set of prime divisors of the element
in . is finite, then the set of primes dividing the element of .# + a is infinite, for Ya > 0.

Proof: Suppose
m l
an:priv an+t:HQ;€jia
i=1 i=1

with {p;} and {¢;} finite sets of primes. It suffices to show there are only finitely many integer
solutions (Z1,...,Tm,Y1,---,Y1)-
For £ =0,1,2 let

Then we may factor

f[lpf = (H pi) ( H pf) . (H pfi/:j) ( H pl(miﬂ)/g) ( H pl(.xi*z)/i‘).

i€ER, 1€ Ro i€ Ry i€Ry i€Ro

Set

A= H pi - H pz?7 X = H p:.“/3 H p(_rifl)/fi’ H p(_zi72)/3.
i€ER i€ERy i€Ry i€R; i€ Ry
Then ﬁpfi — AX3.
=1

l
Similarly, defining residue-classes S = {1 <i <!l:y; =k (mod 3)}, one finds H q' = BY? for
i=1
uniquely determined integers B,Y .
Hence the original equation

l m
[Ta - e =1
i=1 i=1

becomes
BY? — AX? = t.

By Thue’ s theorem each choice of nonzero (A, B,t) admits only finitely many integer solutions
(X,Y). Since (z1,...,Zm,Y1,-.-,y) is uniquely recovered from (A, X, B,Y), there are only finitely
many such exponent-tuples. |

Lemma 51

Statement:

For n > 0, there 9 a set &2 which has n elements and all of them are primes such that for
Vp,q € L, % also a prime.

Lemma 52
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Statement:

Let & = {p | p < n,p is prime}, if there’s an arithmetic progression that has n > 3 term and
all of them are primes, then the common difference,

d=k ] p

peEP

for some k.
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3.8 Quadratic Residue

Definition 74 n'" Power Residue mod m

Description:

Let m > 1,n > 1. An integer a is called a n*® power residue mod m if there exists an

integer x such that
2" =a (mod m).

If no such z exists, then a is called a n** power non-residue mod m.
Specifically, when n = 2, we say a is a quadratic residue mod m (also called QR mod m).

Theorem 101 FEuler’ s Criterion

Statement:

Let m > 1 and n > 1 be integers, then a is an n'” power residue mod m if and only if

— 2@e) _
azdtiem) =1 (mod m).

Proof:
Let G = (Z/mZ)*, then |G| = p(m). The set of all nth powers in G is the subgroup

H={g":9€G}
G|

whose index in G equals Il = ged(n, ¢(m)) = d. Hence H consists exactly of those elements of G
whose dth power is the identity. Concretely,

geH < ¢?=1g = ¢*™/? =1 (mod m).

Taking g = a gives the desired criterion. |

Definition 75 Legendre Symbol

Description:

Let p be an odd prime and a € Z. The Legendre symbol (Z) is defined by

0, »pla,
a
(p> =<1, pfta, aisa quadratic residue mod p,

—1, a is a quadratic nonresidue mod p.

Definition 76 Jacobi Symbol
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Description:

k
Let n > 1 be an odd positive integer with prime factorization n = H p;*. For a € Z, the
i=1

Jacobi symbol (%) is defined by
k e
(-1

where each (i) is the Legendre symbol. In particular, (%) = 0 if and only if ged(a,n) > 1.

Theorem 102 Lagrange’ s Lemma

Statement:

Let p be an odd prime. Then

Proof:
By Euler’ s Criterion,

If p=4k +1, then % = 2k is even, S0

This completes the proof. |

Theorem 103 Gauss’ s Lemma

Statement:

Let p be an odd prime and suppose p t a. Consider the least positive residues of
a, 2a, 3a, ..., %a (mod p),

and let n count the number of these residues that are greater than £, then

Proof:
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Write
r1,72,...,7n (for those > p/2), 81,82,...,8m (for those < p/2).

Then n 4+ m = (p — 1)/2. Observe that the numbers {p —r1,...,p—r, U {81,...,8n} form a
permutation of {1,2,...,(p —1)/2}. Hence

(p;1> ﬁ =i f[ (=" (f[l7"1> (HSJ) (mod p).

i=1

On the other hand, by definition each r; or s; is congruent to ka for some 1 <k < (p —1)/2, so

o p— 1 p—1 p— 1 p—1
||7"z Ilsj:(1~2~~- 5 )QT = ( 5 )!QT (mod p).
Combining these two displays gives

(57) = o () (e

Since ged((p — 1)/2)!, p) = 1, we may cancel ((p — 1)/2)! to obtain

(-1D)"az =1 (mod p).

By Euler’ s Criterion,

as claimed. |

Lemma 53

Statement:

Let p be an odd prime. Then

Proof:
By Gauss’ s lemma, for any integer a with ged(a,p) =1, (%) = (—1)", where n is the number of

least positive residues of {a, 2a, ..., %a} exceeding p/2. Take a = 2; then the set of even residues
F={2,46,....,p—1}
has size Z5=. One checks:

p—1 =4

2l p=41 (mod 8),
_ cF:x>p/2} = 4
n=%#{z x> p/2} = {Zl, p=+43 (mod 8).

Hence
(g):(_l)n: (-)= =1, p==+1 (mod38),
(-1)™* =—1, p=+3 (mod 8).

Noting that

k+1)2— _ —
-1 %:%21%:0 (mod 2), p=+1 (mod 8),
8 %zSWﬂ:Gk—i—lEl (mod 2), p=+3 (mod 8),
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we conclude

Theorem 104 FEisenstein’ s Lemma

Statement:

Let p and g be odd primes. Then

P
Proof:
As in the proof of Gauss’ s lemma, consider the least positive residues modulo p of
p—1
Q7QQ73Q7"'5 472"@
Write those residues exceeding p/2 as r1,72,...,7, and those < p/2 as s1, s2,...,Sy,. Clearly
p—1

n+m= 5
By the Euclid’s Division Lemma, for each 1 < k < % there is an integer |kq/p| and a least
residue 7 such that
k
k:q:ptqu +re, 0<rpy<p-—1

Summing this identity over k =1,2,..., % yields

n

kg ;[ZqJJr;errjf:ls;‘.

On the other hand, if we replace each r; by p — r; (which runs over the same set of “large”
residues), we get the same total > kq. Hence

p—1 p—1
5 5 n m
kq
kq:pZ[fJ +> =)+ s
k=1 =1 P j=1 j=1
Now {p —r;} U{s;} is a permutation of 1, 2,. %1 Thus
n m —1 (p—1 2
D 171)2(24‘1),17*1

Sp=r) + D si=1+2++ = 5 =3

<
Il
a

<.
Il
—

Subtracting (2.2) from (2.4) gives

n n

— (im—i—i&) Z;(p—rj)—z:rj :np—2§;rj.

p—1 p—1
But from (2.2) we also have Y7, r; + >0, 55 = 32,2 kg — p -2, | kg/p). Combining and
simplifying shows that

p—1
2 2

( ?q —n)—i—QZTJ

k=

(q-1)2

—
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—1
Since p and ¢ are odd primes, the left side and 2 r; are even, hence le lkq/p| — n is even.
Therefore

p—1
(—1)Zx2r ka/p)=n — 1,

and so -
(_DZEWI/M = (-1)™

Finally, by Gauss’ s lemma (%) = (—1)". Comparing with (2.5) completes the proof:

(g) — (_1)25 [ 5]

p

Theorem 105 Quadratic Reciprocity Law

Statement:

Let p and ¢ be distinct odd primes. Then their Legendre symbols satisfy
p\ (4 p=1 a1
= =)= (-1) 2 2,
(5) ()=

Proof: (by Rousseau)
By Chinese remainder theorem there is an isomorphism of groups

G = (Z/pqz)* = (Z/pZ)* x (Z/qZ)*.
We identify an element of G with a pair (a,b), where a € {1,2,...,p—1}and b€ {1,2,...,g—1}. Let
H={(1,1), (-1,-1)}

and form the quotient G/H and take their product II. We choose as representatives of G/H first all
of (Z/pZ)* times the first half of (Z/qZ)*, namely

—1
{(a.b):1<a<p-11<b< =}

Since each a—value appears % times, their product modulo p is

(p— 1)!%1 (—1)%1 (mod p) (by Wilson’ s theorem).

Each b e {1,..., q%l} is repeated p — 1 times, so the b—component of the product is

()9 = =2

Hence the product of these representatives is
g=1 p=1g—1
II=((-1)"7 modp, (1) 2 = mod q).

On the other hand, choose representatives by taking the first half of (Z/pgZ)*: all integers
1<n< %71 not divisible by p or ¢q. Let

A={n:1<n< P21 pin, qfn},
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and let
B={q,2q,....,257q} CA

be those divisible by ¢. Then the a—component of the product of A\ B is
H n= (—1)% (%) (mod p) (by Euler’ s criterion).
neA, gin
Similarly the b—component is
p-1
(1'% (2)  (mod q).
Thus this choice of representatives multiplies to

1

m=((-1)*=

Since 7 is determined only up to a sign +1, so

(£) mod p, (~1)"% (2) mod q).

q—1

(D), (D)) = (D), (D)),

Analyzing the two cases (4) and (—) shows in either event

(1)(5) = v
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3.9 Integer Coefficient Polynomial

Definition 77 Primitive Polynomial

Description:

A nonzero polynomial
n
flz) = Zai zt € Z[]
i=0
is called primitive if the greatest common divisor of its coefficients is 1, i.e.

gcd(ag, a,y... ,an) =1.

Theorem 106 Gauss’ s Lemma in Polynomial

Statement:
If f(x),g(x) € Z]x] are primitive, then their product f(z)g(x) is also primitive.

Proof:
Write

f@) =S b, gla) = by,
i=0 §=0

with ged(a;)o<i<n = ged(b;)o<i<n = 1. Suppose a prime p divides every coeflicient of f(z)g(x). Then

in the product

n+m

flx)g(x) = Z ot cp = Z aibj,
k=0

itj=h

each sum Z a;b; is divisible by p. In particular, by Eucid’s Lemma
i+j=k

co=apbp=0 (modp) = plap or p]|bp.
WLOG assume p | ag. Let r be the smallest index with p 1 a,. Then looking at
cr =arbg +ar_1b1 + -+ aOb'ry

all terms except a,.bg are divisible by p, yet ¢, =0 (mod p). Hence p | by. Repeating the same
argument on increasing indices shows p | b; for all ¢. This contradicts ged(b;)o<i<n = 1. Thus no
prime divides all coefficients of fg, so fg is primitive. |

Definition 78 Irreducible Polynomial

Description:

Let F be a field and let f(x) € F[z] be nonconstant. We say f(z) is irreducible over F if
whenever

f(@) = g(x) h(z)  with g(z), h(z) € Fla],

then one of the factors is a nonzero constant.
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Theorem 107 Gauss’ s Irreducibility Lemma
Statement:

A nonconstant polynomial f(z) € Z[z] is irreducible in Q[z] if and only if it is both primitive
and irreducible in Z[x].

Proof:
“=7" is trivial.
Conversely, assume f is primitive and irreducible in Z[z], but factors in Q[x] as

f(z) =G(x)H(x), G,H € Q[z], degG,degH > 0.
Choose minimal positive integers ¢, c2 such that ¢1G, coH € Z[z]. Then
cres fx) = (ch(x)) (CQH(J)))

is a product of primitive polynomials, so by Form I both ¢;G and coH are primitive. Since f itself is
primitive, ¢1co must be £1, forcing G, H € Z[z]. This contradicts irreducibility of f in Z[z]. |

Theorem 108 FEisenstein’ s Criterion

Statement:

Let "
Pm) = Zaixi € Zlz], an#0.
=0

If there exists a prime p such that

L. ptan,

2. pla;forall0<i<n-—1,

3. p? {ao,
then P(z) is irreducible in Q[z].

Proof: First we show that P(x) is irreducible in Z[z]. Suppose, to the contrary, that

P(z) = (éb a:> (écj :cj), m, 0> 1,

with b;, cj € 7.

Since p 1 a,, = by, ¢, neither b, nor ¢, is divisible by p. On the other hand p | ag = bg co but p? { ag,
so exactly one of by, ¢p is a multiple of p. WLOG assume p | by and p { co.

Let ¢t be the smallest index with 1 < ¢ < m such that p{b;. Then p | b; for all 0 < i < ¢. Compare

coefficients of z?: )
t—
ay = Z biCj = thO + Zbict—i-

i+j=t i=0
All terms in the second sum are divisible by p, and since ¢t < n we have p | a;. Hence p | b; ¢o. But
p1b; and pt e, a contradiction.
Therefore no nontrivial factorization is possible, and P(z) is irreducible in Z[z].
Moreover, if cont(P) > 1, let P(x) := cont(P) - P;(x), then by Gauss’ Irreducibility Lemma, P;
irreducible over Q implies P also irreducible over Q. |
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Theorem 109 Cohn’s Irreducibility Criterion

Statement:

Let b > 2 be an integer. Suppose the number
UnGn_1 Go (G #0)
is a prime written in base b. Then the polynomial
P(2) = apx"™ + ap_12" 1 4+ +ag

is irreducible in Zx].

Proof: (by M. Ram Murty)
Claim 1: For any root « of P(z), we have R(a) < 0 or

1+vAb—3
jaf < —5—.

Proof of Claim 1: We may assume R(a) > 0 and |a| > 1.
Since P(«a) = 0, we get

n

Gn—1 Qp—j
an + —=—| = E it N
a ¢ [e%

Note that

and a,, > 1, so

By Triangle Inequality,

Hence

SO
1416 —3
o] < —5—.

Claim 2: When b = 2, for any root « of P(z), we have

R(a) < ;

Proof of Claim 2: Again we assume R(a) > 0 and || > 1. When n = 1,2, it is easy to verify that

z,z+ 1,22, 22+ 1,22 + x, 22 + z + 1 all satisfy the requirement.
When n > 3, we use P(«) = 0 to get

n
Apn—1 Ay —2 Ap—j
an + + = 2.
(&%

o?

If [arga| < 7, then

149
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SO

Qp— Ap— Qp— Ap—
a, + n1+ n2‘2§R(an+ n1+ n2)>1.
« «

By Triangle Inequality,

An—j 1 1
< <
2 | < L P PP
Jj= j=3
So
e — L e jaf—laf—1<0, =R(a)<]|a| <>
laf® — o277 7 2’

Now if |arga| > 7, then by Lemma 1:

1 5 1 5 3
la] < +\[, so R(a) < |04\cosI < V5 < -
2 4 2v/2 2
g
Return to the original problem. Suppose P(z) € Z[z] is reducible. Let
P(x) = f(z)g(z),
where f(z),g(z) € Z[x] are nonconstant integer-coefficient polynomials. Since P(b) is a prime and
f(b),g(b) € Z, we may assume:
[f(0)] = 1.
Let the roots of f(z) be aq,...,am,. By Lemma 1, R(a;) <0 or
14 v4b—
|| < %3, fori=1,...,m.
When b > 3,
1+ v4b—
b—%g >1, =|b—ol>1,
S0
1fOI = T —ai)| >1
i=1
Contradiction.
When b = 2, by Lemma 2:
3
and the leading coefficient of f(z) is 1. So
@) =[] -a)| > [ —a)| = 1F V) =1
i=1 i=1
Contradiction. ]

Theorem 110 Perron’ s Criterion

Statement:
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Let N
P(z) = Zaixi € Z[x]
=0

be a monic polynomial, i.e a, = 1. If

n—2
lan—1] > 1+ Z la;] and ag # 0,
=0

then P(z) is irreducible in Z[z].
Proof:

We first show that P(z) has at most one root with modulus > 1.
Assume P(z) has a root a with |a| = 1. Since P(«) = 0, by Triangle Inequality

n—2 n—2 n—2
lan_1] = lan—10" 7 = 0"+ " aia’ | < o[+ Jaidd| <1+ adl,
=0 i=0 =0

contradicting the hypothesis.
Now suppose P(x) has a root « with || > 1. Write

P(z)=(z— «) (:E"l + 2 bixi> .
i=0

By comparing coefficients, we obtain

Up—1 = bn—2 —Q,

Up—2 = bn73 - abn727

a; = by — abs,

apg = —Oéb().

Substitute these into the inequality:

n—2
an-al > 1+ 3" Jail,
i=0

we get:
n—3
‘bn,Q — a\ >14+ Z |b2 — abi+1| + |ab0|.
i=0
Using triangle inequality:
n—3

bl +lal > 1+ Y (b — [bi]) + [l bol.

i=0
Group terms and simplify:

ol = 1> (ja] = 1) (Z |bz-|> |

=0
SO

n—2
1> Z |b2|
=0
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Now suppose
n—2
mnfl + Z bil’l
i=0

has a root S with |5 > 1. Then

n—2 n—2 n-2
B =S b < S bl < (ZW) Cli
i=0 =0 =0
SO
n—2
1< Z |bil.
i=0
contradiction.

Back to the original problem.
Suppose for contradiction that P(z) is reducible in Z[z]. Let

where f, g are nonconstant monic polynomials with integer coefficients.

By Vieta’s Theorem, product of roots of f is positive integer, so there’s a root of f with modulus
> 1. Similarly g also has a root with modulus > 1, and hence P has at least 2 roots with modulus

> 1, contradiction. |
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3.10 Combinatorial Number Theory

Theorem 111 Erdés-Ginzburg-Ziv Theorem

Statement:

Let n > 1, we can always find n integers from arbitrary 2n—1 integers such that their arithmetic
mean is integer.

Proof: WLOG, assume
0<ar<ax <---<ag-1<p.
If there exists 1 < ¢ < p — 1 such that a; = a;1p—1, then

i+p—1
Z a; =pa; =0 (mod p).
j=i

If for every 1 <i <p —1 we have a; # a;yp—1, set

A ={ai, aigp1}, 1<i<p-—1, Ap = {azp1}.
By the Cauchy-Davenport theorem,
P

S

i=1

P

> min{p, Y14l - -1} = p

i=1

Hence

completing the proof. |
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3.11 Analytic Number Theory

Definition 79 Riemann Zeta Function

Description:

The Riemann zeta function ((s) is defined for R(s) > 1 by

Theorem 112 Fuler Product

Statement:
For R(s) > 1,
1
&= 11 ==
p prime
Proof:
we set

1L o 2

P

asq a product or sum over prime p.
Every positive integer n may be written uniquely as

n= 1] »>,
p prime

where each exponent ¢, > 0 and ¢, = 0 for all but finitely many primes. Hence

TI(> »)

p  cp=0

expands formally to
ST =S
(cp) P n=1

since [[,p~* = (][, p®)"* = n~* and each n arises exactly once. Absolute convergence for
R(s) > 1 justifies this rearrangement. Finally, each factor is a geometric series:

oo
Z p—c,,s _ 171 ,

—s
cp=0 p

SO
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3.12 Algebraic Number Theory

Definition 80 Algebraic Number

Description:

A complex number « is called an algebraic number (denoted as o € A) if there exists a
nonzero polynomial
P(z) € Z|z]

such that
P(a) = 0.

If no such polynomial exists, a is said to be transcendental.
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Chapter 4

Geometry

4.1 Argand Plane

Remark: In this section, all points use the same letter to represent the corresponding complex
number in the Argand Plane. The proof of unit circle version of each formula is not given.

Lemma 54

Statement:

In the Argand Plane, if z € C lies on circumference of the unit circle, then

_ 1
zZ = —.
z

Proof:

Since |z| = 1, we have 2z = |z|?> = 1. Rearranging gives
_ 1
zZ=-—.

z

Theorem 113 Parallelity Criterion in Argand Plane
Statement:

For A,B,C,D € C, AB || CD if and only if

A-B
C-D

eR.

unit circle form: If A, B,C, D lie on circumference of unit circle,

AB =CD.

Proof:

A-B A-B
AB || C’D@arg(AB)arg(CD)@arg(C_D> —O@C_D eR.

161
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Theorem 114 Perpendicularity Criterion in Argand Plane

Statement:

Form 1: For A,B,C,D € C, AB L CD if and only if

A-B
C-D

Form 2: For A, B,C,D € C, AB 1 CD if and only if

e iR.

(A—-B)(C — D) €iR.
unit circle form: If A, B,C, D lie on circumference of unit circle,

AB+CD =0.

To prove Form 1, only need to notice that AB 1 C'D if and only if exits some o € R such that
A — B =1ia(C — D). Now we can prove Form 2 by Form I:

A-B ,A—B SR

Theorem 115 Collinearity Criterion in Argand Plane

Statement:

Form 1: For A, B,C € C, A, B, C collinear if and only if

A-B
C-B

eR.

Form 2: For A, B,C € C, A, B, C collinear if and only if

=0.

— = =
Qe
Ql &l

Form 3: For A,B,C € C, A, B, C collinear if and only if
(A-B)C - (A-B)C+ AB—-AB=0.
unit circle form: If A, B lie on circumference of unit circle,
C=A+B-ABC

Proof:
Form 1 is true by Complex Parallelity Criterion, notice that

A-B [(A-B A-B A-B|_,
c-B \c-B| lc-B °-B| "

then we can immediately prove Form 2 by compute

o

Ql |
| )
efllee]

[
QW=
Ql &l

[

e}

1 A-B
1 C-B
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and after expand the determinant we get Form 3. |

Theorem 116 FEquation of Straight Line in Argand Plane

Statement:
For A, B € C, the equation of straight line AB is
(A—B)>— (A— B)z = AB — AB.
Remark: Noted that AB — AB € iR.

Proof: True by Complex Collinearity Criterion. |

Theorem 117 Concurrency Criterion in Argand Plane

Statement:

For three pairwise non parallel lines [y, ls,l3, where [; : @;z — a;Z = b; for i = 1,2, 3, then they
are concurrent if and only if

a1 ar b
az Qg b2 = 0.
a3 a3 bz

Proof:

Noticed that I; concurrent if and only if the system of equation

a1z — a1z = by,
a2z — 9z = bg,

asz — a3z = bg.

has a solution z*. By Cramér’s Rule, the intersection point of I, ls

by —ay bi a1
% by —as by ap
25 = = — .

ay —ag ay ax

az —a2 az a2

Then by Complex Collinearity Criterion, its equivalent to

by aq b1 a1 b aq by @
_ by an —by a3 by a2 by @2
b3 = az1— —as — = a37— — az—
ap a1 ap a1 a1 a1 ap a1
as Qa9 as ao as Qa9 as a2

since b; € {R. Multiply the denominator to both side yield

ap a b

by a a; ap

3612 ag

O=a3

by a
S az az b3
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|
Theorem 118 Complex Parallelogram
Statement:
For A,B,C,D € C, ABCD is a parallelogram if and only if
A+C =B+ D.
Proof:ﬁ:ﬁ(:}A—B:D—C. |

Theorem 119 Complex Midpoint

Statement:

For A, B € C, then C' is midpoint of segment AB if and only if

A+ B
C= .
2
Proof: Let D = A + B, consider Parallelogram OAD B, since midpoint of AB intercept midpoint of
D A+B
OD, then midpoint of AB = — = ; . n

Theorem 120 FEquation of Perpendicular Bisector in Argand Plane

Statement:

For A, B € C, the equation of perpendicular bisector of segment AB is

(A-B)z+ (A— B)z = |A]? — |B.

Proof:

Let the perpendicular bisector of segment AB be [, then its normal vector will be A — B which
means the vector (A — B)i has the same direction with I. Also remember that ! pass through AJFTB
then by Equation of Straight Line in Argand Plane,

—i(A—B)z—i(A—B)z = —i(A—B)<A+B) —i(A—B)(A+B)

)

2 2

& (A-B)z+(A-B)z =|A]? - |B].

Theorem 121 Complex Reflection Over a Line Formula
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Statement:

For X, X', A, B € C, then X’ is the reflection of X over line AB if and only if

(A-B)X + AB - AB

X' = —
A-B

unit circle form: If A, B lie on circumference of unit circle,

X' =A+B— ABX.

Proof: Noticed that

X' —A X-A
15— <A — B)l After arrangement give us the desired. n

Theorem 122 Foot of Altitude in Argand Plane

Statement:

For X, F, A, B € C, then F is the foot of altitude of X to line AB if and only if

unit circle form: If A, B lie on circumference of unit circle,

F:%(X+A+B—ABY).

Proof: It’s obvious by Complex midpoint and Complex Reflection Over a Line Formula
because F' is the midpoint of segment X X”’. |

Theorem 123 Intersection in Argand Plane
Statement:

For A, B,C,D, P € C, P is the intersection point of line AB and line C'D if and only if

(AB — AB)(C — D) — (A— B)(CD — CD)
(A-B)(C-D)-(A-B)(C-D)

unit circle form: If A, B,C, D lie on circumference of unit circle,

AB(C + D) — CD(A + B)

P= AB—CD

Proof:
Recall that the equation of the straight line through A, B € C may be written in the form

(A-B)z—(A-B)z=AB — AB.
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Thus the intersection P of lines AB and CD is the unique solution z = P of the simultaneous system

(A-B)>—(A—B)z=4B — AB,
(C-D)z—(C—-D)z=CD — CD.

By Cramer’ s rule the solution for z is

AB—-AB A-B
PL@—CD C—D‘MB—AmmuDywA—mwm—cm
B PB Aﬂ ~ (A-B)(C-D)-(A-B)(C-D)

-D C-D

Q

Theorem 124 Ice Cream Cone Formula

Statement:

For A, B,C € C, if the incircle of AABC is the unit circle, and AC, AB tangent to it at D, E

respectively, then
s 2DE
- D+E’

Proof: Applying unit circle form of Complex Intersection Formula by setting the lines as DD
and FE. m

Theorem 125 Complex Shoelace Formula

Statement:
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Let A, B,C € C with affixes a, b, c. The signed area [AABC]| of triangle ABC may be written
in two equivalent forms:

Form 1:
|1 a @
[AABC] = % 1 b b
1 ¢ ¢
Form 2:
[AABC| = % S(ab + be + ca).
Proof:

Consider W’ = x + yi, Oﬁ := u + vi, then the directed area of the parallelogram with side OP and
i 1
0Q will be zv — yu = S(PQ), so [AOPQ] = QS(PQ). Hence, we have

DN | =

[AABC] =Y [AOAB] = =S (Z ab> :

cyc

so we solved Form 2.
Expanding the 3 x 3 determinant in Form 1 along the first column gives

S

=ab+bé+ca—ac—ba—ch.

S8
ol o 2

1

o

i

Multiplying by 7 and using i(z — Z) = 23(2) yields

%(a5+b6+ca—a6—ba—cﬁ> = =S(ab + be + ¢ca),

DO | =

which is exactly Form 2. [ ]

Theorem 126 Complex Similar Triangles

Statement:

Let A,B,C,D,E,F € C. The triangles AABC and ADEF are directly similar if and only if

1 A D
1 B E|=0.
1 C F

Moreover, AABC' is opposite-similar to ADEF (mirror image) if and only if

=0.

QW
1 =l O

Theorem 127 Complex Circumcenter
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Statement:

For A, B,C € C, the circumcenter of (ABC) is

1 A AP
1 B |BJ?
1 C |C)?
Onape = 2_¢ 1911,

— = =
QT
Q ol |

Theorem 128 Complex Centroid

Statement:

For A, B,C € C, the centroid of AABC' is

_A+B+C

G
3

Theorem 129 Complex Incenter

Statement:

For A,B,C € C, let A= a? B =% C = c?, then the incenter of AABC is

I:—Zab.

cyc

Theorem 130 Complex Center of Nine Point Circle

Statement:

For A, B,C € C, if (ABC) is unit circle, then the center of nine point circle of AABC' is

_A+B+C

Ng 9

Theorem 131 Concyclic Criterion in Argand Plane

Statement:

A, B,C,D € C, are concyclic if and only if

A-B C_DER
C—-B A-D '
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Theorem 132 Complex Equilateral Triangle

Statement:

For A, B,C € C, AABC is equilateral if and only if

A2+ B2+ C2 = AB + BC + CA.
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Chapter 5

Advance Math

5.1 Real Analysis
Theorem 133 L’ Hopital’ s Rule

Statement:

Let f,g € C*((a,b)) and suppose ¢'(z) # 0 for all = € (a,b). Let ¢ be a point in [a,b] (or a
finite endpoint) such that

lim f(z) = limg(z) =0 or lim f(z)= lim g(z) = +o0.

Tr—cC T—cC T—cC r—c
If ,
L= lm? ,($>
v—e g'(z)
exists (finite or infinite), then
im 28 _
a—e g(z)

Proof:
We give the classical proof in the 0/0 case; the co/oo case is analogous. For z # ¢ in (a,b), since
f(e) = g(¢) =0, by Cauchy’ s Mean Value Theorem there exists £ between 2 and ¢ such that

Hence

As © — ¢, we have £ — ¢, so by the hypothesis lim,_,. f'(z)/¢'(xz) = L, therefore

lim Lx) = lim I'(§) =

zoe g(x)  aoe g'(€)
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